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Introduction

Our goal is to study the logics that accommodate rejected
propositions along with asserted propositions. We will call such
logics unified. And we abolish the regular implicit assumption
that every proposition which is not asserted is rejected.

Thus, we need to answer the following questions:

(a) What do we prove?
(b) How do we prove it?

The brief answers are

(a) We prove statements asserting or rejecting a given proposition;
(b) We use the multiple-conclusion rules which premises and
conclusions are finite sets of statements.
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Introduction

It is due tukasiewiecz that rejection was explicit including to logic.
In the introduction to his paper! , he wrote:

"The concepts of "truth”, "falsehood”, and "assertion” | owe to
Frege. In adding "rejection” to "assertion” | have followed
Brentano.”

!J. Lukasiewicz "Two-valued logic”, 1921
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Introduction

It is due tukasiewiecz that rejection was explicit including to logic.
In the introduction to his paper! , he wrote:

"The concepts of "truth”, "falsehood”, and "assertion” | owe to
Frege. In adding "rejection” to "assertion” | have followed
Brentano.”

According to Brentano and in contrast to Frege, assertion (or
acceptance) and rejection (or refutation, or denial) should have the
same status. Let us note that assertion of a negation is much
stronger than the rejection. For instance, in the Classical Logic we
reject formula p (in symbols - p), but the assertion + —p does not
hold.

!J. Lukasiewicz "Two-valued logic", 1921
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Introduction

tukasiewicz suggested to endow regular calculus (with rule of
substitution) defining the Classical Logic (CPC), with the
anti-axiom - p and the following two rules:

modus tolens: F(A->B),4B/4A (MT)
reversed substitution: —o0(A)/ 4 A (Rs)

2R. Carnap Introduction to Semantics, Paragraph 24.
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Introduction

tukasiewicz suggested to endow regular calculus (with rule of
substitution) defining the Classical Logic (CPC), with the
anti-axiom - p and the following two rules:

modus tolens: F(A->B),4B/4A (MT)
reversed substitution: —o0(A)/ 4 A (Rs)

Independently, Carnap suggested to include rejections into
deductive systems: "The rules of deduction usually consist of
primitive sentences and rules of inference (defining "directly
definable in K'). Sometimes, K contains also rules of refutation
(defining 'directly refutable in K').”2 Moreover, Carnap also used
the multiple-conclusion rules.

2R. Carnap Introduction to Semantics, Paragraph 24.
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Introduction

Carnap’s motivation to introducing refutations and
multiple-conclusion rules was requirement of categoricity: if we
want to syntactically characterize two-valued classical semantics,
this syntactical system should be valid only (up to matrix
isomorphisms) on the two-element Boolean matrix. But any axiom
and the rule which is valid in (2,{1}), is valid in all matrices
(27,{1}),n >0 as well.

1
1
v O
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Introduction

Carnap’s solution is to use refutations and multiple-conclusion
(multiple-alternative) rules — the ordered pairs /A of finite sets of
formulas.

In semantics, a rule /A is valid in matrix (A, D) if for any

valuation v,
v(l') € D entails v(A)n D # @.

A rejected (refuted) proposition — A is valid in a given matrix, if for
some valuation, the value of A is not designated. For instance, - p,
where p is a variable, is valid in any matrix having at least one
non-designated element, and — p is invalid in all matrices in which
every element is designated.
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Introduction

Our goal is not to limit the class of matrix. We follow the
Brentano-tukasiewicz path.
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Introduction

Our goal is not to limit the class of matrix. We follow the
Brentano-tukasiewicz path.

Before we proceed, the warning:

We do not consider multiple-conclusion logics in the sense of
Shoesmith and Smiley or Carnap’s junctives.

We use multiple-conclusion rules merely as means of derivation of a
statement from a set of statements.
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Unified Logic

We assume that Frm is a set of propositional formulas built in a
regular way from a countable set Var of propositional variables and
a finite set of connectives Q.

Definition
A unified logic is an ordered pair (L*,L7), where L™ is a set of
formulas closed under the rule of substitution: Sb := A/o(A), where

A€ Frm and o is a substitution, while L™ is a set of formulas closed
under the rule of reverse substitution: Rs := o (A)/A.
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Unified Logic

We assume that Frm is a set of propositional formulas built in a
regular way from a countable set Var of propositional variables and
a finite set of connectives Q.

Definition
A unified logic is an ordered pair (L*,L7), where L™ is a set of
formulas closed under the rule of substitution: Sb := A/o(A), where

A€ Frm and o is a substitution, while L™ is a set of formulas closed
under the rule of reverse substitution: Rs := o (A)/A.

For example, let CI" be a set of all classical tautologies and
ClI™ := Frm ~ CI". Then the pair UCL := (CI",CI") is a unified
classical logic.
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Unified Logic

L* is a set of asserted (accepted) propositions — theorems ; L™ is a
set of rejected (refuted, denied) propositions — anti-theorems ;
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Unified Logic

L* is a set of asserted (accepted) propositions — theorems ; L™ is a
set of rejected (refuted, denied) propositions — anti-theorems ;

We make no assumptions regarding relations between L™ and L~.
All possibilities are admissible:

L* - asserted propositions

L™ - rejected propositions

L" - asserted and rejected
propositions

L® - neither asserted nor rejected
propositions
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Introduction: Types of unified logics

If L* nL™ = @, the logic is coherent.
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Introduction: Types of unified logics

If L* nL™ = @, the logic is coherent.
If L* uL™ = Frm, the logic is full.
A full and coherent logic is called standard.

Example. Let us take the three-element Heyting algebra
A :=({0,a,1};>,A,V,=), and consider a (logical) matrix
M :=(A;D* ={1},D™ ={0}). For any proposition A, we let

Ael* < for each valuation v,v(A) € D*;
Ael™ < there is a valuation v, such that v(A) e D™.

Then, AeL" if and only if A is valid in the Smetanich logic. Ae L™
if and only is A is invalid in the Classical logic. Propositions p v =p
and ——p — p are neither asserted, not rejected.
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Unified Logic

It is custom to define logic by a consequence relation. If assertions
and rejections have the same status, we need to consider the
consequence relations on sets of meta-statements of the type "A is
asserted” (AeL™) and "Ais rejected” (AeL™).

3The similar notations are used in T. Smiley "Rejection 1996 and |. Rumfitt

"Yes and No", 2000.
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Unified Logic

It is custom to define logic by a consequence relation. If assertions
and rejections have the same status, we need to consider the
consequence relations on sets of meta-statements of the type "A is
asserted” (AeL™) and "Ais rejected” (AeL™).

It is inconvenient for our purposes to use + and - for "is asserted”
and "is rejected”, because the notation like

FAL,...,mrA -+ B
looks confusing. Instead, we use ®A for "A is asserted”, and ©A for
" A is rejected”. The notation®
®A;,...,®A, -8B
3The similar notations are used in T. Smiley "Rejection 1996 and |. Rumfitt

"Yes and No", 2000.
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Meta-statements (or statements, for short) are expressions of form
@A — positive or assertions, and ©A — negative or rejections,
where A € Frm.
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@A — positive or assertions, and ©A — negative or rejections,
where A € Frm.The set of all statements is denoted by S, and by
S* and S~ we denote respectively the set of all positive and the set
of all negative statements.

Unified consequence relation is a binary relation + defined on sets
of statements and statements and satisfying the regular properties
of consequence relation: for any sets LA c S and any a, S €S

akF (R)
if T-aand ' A, then A+« (M)
if T~aand a,A+ 3, then, A+ (5. (T)
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Statements

Meta-statements (or statements, for short) are expressions of form
@A — positive or assertions, and ©A — negative or rejections,
where A € Frm.The set of all statements is denoted by S, and by
S* and S~ we denote respectively the set of all positive and the set
of all negative statements.

Unified consequence relation is a binary relation + defined on sets
of statements and statements and satisfying the regular properties
of consequence relation: for any sets LA c S and any a, S €S

akF (R)
if T-aand ' A, then A+« (M)
if T~aand a,A+ 3, then, A+ (5. (T)

Relation + is finitary if [+ « entails " + « for some finite [ c T
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Logic: theorems

Each unified consequence relation + defines a set of asserting

theorems :
Th*(+):={aeS" | +a}

and a set of refuting theorems :
Th™(F):={aeS | +a}.

The set Th(~) := Th™ () U Th™(+) is a set of theorems .
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Logic: theorems

Each unified consequence relation + defines a set of asserting

theorems :
Th*(+):={aeS" | +a}

and a set of refuting theorems :
Th™(F):={aeS | +a}.
The set Th(~) := Th™ () U Th™(+) is a set of theorems .
Note, that Th™(+) n Th™(+) = & simply because ST NS~ = @.
But if we consider the projections onto the set of propositions:
L*={AeFrm| @ Ae Th"(r)},
L :={AeFrm| e AeTh (+)}

the situation is different.
Alex Citkin



Introduction: types of refutation

In general, there are two ways of how to handle refutation
syntactically: direct and indirect. To determine whether formula A
is refutable one can do one of two things:

a) to derive in a meta-logic a statement about refutability of A
g
(L-proof - Lukasiewicz-style proof)

*W. Staszek "On Proofs and Rejections”, 1971
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Introduction: types of refutation

In general, there are two ways of how to handle refutation
syntactically: direct and indirect. To determine whether formula A
is refutable one can do one of two things:

(a) to derive in a meta-logic a statement about refutability of A
(L-proof - Lukasiewicz-style proof)

(b) to derive from A a formula B that we already know is
refutable, and apply Modus Tollens (i-proof - indirect proof,
Carnap's way)

An existence of an L-proof entails the existence of i-proof. The
converse is true under some assumptions (some weak form of the
deduction theorem*) and we will revisit this issue later.

*W. Staszek "On Proofs and Rejections”, 1971
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Introduction: Direct refutation, an example

As an example, let us consider a Classical Propositional Calculus
(CPC) with regular set of axioms and rules

oA+ a(A—> B)/®B (MP)
®A/ @ c(A), where o is a substitution (Sb)
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Introduction: Direct refutation, an example

As an example, let us consider a Classical Propositional Calculus
(CPC) with regular set of axioms and rules

oA+ a(A—> B)/®B (MP)
®A/ @ c(A), where o is a substitution (Sb)

And let us extend this calculus to calculus CPC® by adding an
anti-axiom
+op,

where p is a propositional variable, and two rules

®(A— B),eB/e A (MT)
oc(A)/ e A, where o is a substitution (Rs)
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Introduction: Direct refutation, an example

tukasiewicz has observed that CPC® is a complete axiomatization
for classical logic. It is clear that every classically valid formula is
derivable in CPC°.

Let A be a formula invalid in CPC. Then, there is a substitution o
such that —c(A) is valid in CPC. Hence, in CPC (and CPC®) we
have

+o(A) > por +a&(c(A) > p) in CPC°.

Therefore, by (MT), we have
Foo(A)
and, by (Rs), we have
F eA.

Soundness easily follows from the observation that all axioms, the
anti-axiom and the rules are valid in the 2-element Boolean algebra.
Alex Citkin



Introduction: Direct refutation, an example

Let us take any intermediate logic J — a logic extending IPC and
contained in CPC, and add the anti-axiom + ©p and the rules MT
and Rs. In such a way we obtain a unified logic /°.
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For any formula A, if I + A, then I° + ®A.

If | + —=A, then, Ais invalid in CPC, and we can repeat the
argument used for CPC and conclude that /° + 6A.
We can use the semantic means and conclude that

L*(1°) = {AeFrm | I - A},
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Introduction: Direct refutation, an example

Let us take any intermediate logic J — a logic extending IPC and
contained in CPC, and add the anti-axiom + ©p and the rules MT
and Rs. In such a way we obtain a unified logic /°.

For any formula A, if I + A, then I° + ®A.

If | + —=A, then, Ais invalid in CPC, and we can repeat the
argument used for CPC and conclude that /° + 6A.
We can use the semantic means and conclude that

L*(1°) = {Ac Frm | I - A},
L (I°)={AeFrm | I+ -=A} ={AeFrm | CPC v+ A}.

If I+ Aand |+ —==A, then I°+ @A and [° i+ ©A. Thus,
L*(1°) uL™(1°) # Frm,

that is, J is not full.
Alex Citkin
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Multiple-Alternative Rules

If ', A are finite sets of meta-statements, an ordered pair [/A is
called a structural multiple-conclusion or multiple-alternative rule
(m-rule for short). The premises I are viewed conjunctively, while
the conclusions A are viewed disjunctively.
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called a structural multiple-conclusion or multiple-alternative rule
(m-rule for short). The premises I are viewed conjunctively, while
the conclusions A are viewed disjunctively.

In general, we divide rules into three categories: if r:=T/A is a rule,
then

r is conclusive if A consists of a single formula

r is inconclusive if A consists of more then one formula

ris terminating if A =@
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Multiple-Alternative Rules

If ', A are finite sets of meta-statements, an ordered pair [/A is
called a structural multiple-conclusion or multiple-alternative rule
(m-rule for short). The premises I are viewed conjunctively, while
the conclusions A are viewed disjunctively.

In general, we divide rules into three categories: if r:=T/A is a rule,
then

r is conclusive if A consists of a single formula
r is inconclusive if A consists of more then one formula
ris terminating if A =@

For instance, ®p,®(p - q)/ ® q is a conclusive rule;
®(pVvq)/®p,dq is an inconclusive rule; ®p,6p/@ is a terminating
rule.

In addition to m-rules, we consider two rules: the rule of

substitution Sb, and the rule of reverse substitution Rs.
Alex Citkin
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Multiple-alternative rules allow to explicitly use the proofs by cases.
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Multiple-Alternative Rules

Multiple-alternative rules allow to explicitly use the proofs by cases.
In the setting of natural deduction, proof by cases looks like this:

A 1Bl

Av B C C
C
In the multiple-alternative setting, proof by cases looks like this:

Av B

r‘—‘ (pPvq)/p,q

A
C

B
C
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Multiple-Alternative Rules

Multiple-alternative rules allow to explicitly use the proofs by cases.
In the setting of natural deduction, proof by cases looks like this:

[Al (8]
Av B C C
C
In the multiple-alternative setting, proof by cases looks like this:
Av B
r‘—‘ (pPvq)/p,q
A B
c C

By applying rule I'/A we get the alternatives A to be considered

separately.
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Multiple-Alternative Inference

We use v to denote an empty set of premises, and a to denote an
empty set of alternatives. v and 4 are merely notations and they
are not the symbols of the language or meta-language.

®Note that we define an inference from (I', R) without clarifying what we
are deriving.
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Multiple-Alternative Inference

We use v to denote an empty set of premises, and a to denote an
empty set of alternatives. v and 4 are merely notations and they
are not the symbols of the language or meta-language.

Inferences are finite trees the nodes of which are labeled by
statements, v or a. A leaf labeled by a is teriminating (we have
reduced a case to contradiction), otherwise, it is extendable .

Let R be a set of rules (that may include Sb and/or Rs) and I be a
set of statements (which may be empty). An inference from T by
R (or (I',R)-inference for short) is a finite tree nodes of which are
labeled by statements, and it is defined by induction®:

®Note that we define an inference from (I', R) without clarifying what we
are deriving.
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Multiple-Alternative Inference

Like in a Hilbert-style inference, we use the assumptions and apply
the inference rules.

A tree consisting of a single node (a root) labeled by v is a
(T',R)-inference (it is needed for a sake of convenience).
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Multiple-Alternative Inference

Like in a Hilbert-style inference, we use the assumptions and apply
the inference rules.

A tree consisting of a single node (a root) labeled by v is a
(T',R)-inference (it is needed for a sake of convenience).

Using the assumptions: if Jis a (I',R)-inference, then any
non-terminal leaf can be extended by adjoining a leaf labeled by a
statement from [, and the obtained tree is a (I, R)-inference.

Applying the rules: if Jis a (I, R)-inference, then any non-terminal
leaf A can be extended by adjoining the leaves labeled by 4, or by
statements from a finite set A, provided there is an instance =/a or
=/A of a rule from R, and all statements from = are between A
and the root. The tree obtained in such a way is a (I, R)-inference.

Alex Citkin



Multiple-Alternative Inference

Suppose that %11""’%’" is an instance of a rule from R.
v v
e SR
CT T T T T T T T ! | |
| | | ' | |

Em —— Em
Oz‘k (673
01 On
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Multiple-Alternative Inference

Let ', A be sets of statements, o be a statement and R be a set of
rules.

Definition

« is derivable from A by (I',R), if there is a (A uT,R)-inference
each leaf of which is labeled by a or by a.
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Multiple-Alternative Inference

Let ', A be sets of statements, o be a statement and R be a set of
rules.

Definition

« is derivable from A by (I',R), if there is a (A uT,R)-inference
each leaf of which is labeled by a or by a.

Roughly speaking, « is derivable from A if after we have considered
every case arisen in the proof, we either have derived «, or we have
arrived at a contradiction, meaning, that the case is not possible.
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Multiple-Alternative Inference

Let ', A be sets of statements, o be a statement and R be a set of
rules.

Definition

« is derivable from A by (I',R), if there is a (A uT,R)-inference
each leaf of which is labeled by a or by a.

Roughly speaking, « is derivable from A if after we have considered
every case arisen in the proof, we either have derived «, or we have
arrived at a contradiction, meaning, that the case is not possible.
Proposition

Any pair consisting of a set of statements [ and a set of rules R,
defines a consequence relation:

A+ o = « is derivable from A by (I',R).
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Multiple-Alternative vs. Classical Inference: an Example

Coga npunoxuna yxo k rpyan Bypatuno.
- MauneHT ckopee MepTB, Yem XUB, - NPOLUENTANA OHA.
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Multiple-Alternative vs. Classical Inference: an Example

Coga npunoxuna yxo k rpyan Bypatuno.
- MauneHT ckopee MepTB, Yem XUB, - NPOLUENTANA OHA.

Kaba npownenana 6onbwum prom:
- MauwneHT ckopee XMB, HeM MeEpTB...

- OpHo u3 aByx, - npowenecten HapogHbiii nekaps Boromon, - unn
NaLNEHT XMUB, UAN OH yMep. ECnm oH XKnB - OH OCTaHETCs XUB uan
OH HE OCTaHeTCs XuB. Ecnn oH MepTB - €ro MOXHO OXXUBUTL WK
HEJIb3S OXKMBUTb.
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HEJIb3S OXKMBUTb.

[leBouka BCNNECHYNA XOPOLUEHBKUMY PyKaMM:

- Hy, kak ke mMHe ero neunts, rpaxkgaHe?

KacTopkoii, - keakHyna Maba.

KacTopkoii! - npesputensHo 3axoxotana Cosa.

Nan kacTopkoii, nnn He KacTOpkoi, - npockpexeTtan boromon.
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Multiple-Alternative Inference

Definition
Unified deductive system is a pair (I',R), where I is a set (maybe
empty) of statements, and R is a set (maybe empty) of rules.
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t-complete for L, or L is defined by D, if

a=®Aand Acl*

Fp a <
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Any unified deductive system defines a unified logic.

Alex Citkin



Multiple-Alternative Inference

Definition
Unified deductive system is a pair (I',R), where I is a set (maybe
empty) of statements, and R is a set (maybe empty) of rules.

Let L=(L*,L7) be a unified logic. A deductive system D is
t-complete for L, or L is defined by D, if

a=®Aand Acl*

Fp a <
a=6Aand Ael".

Any unified deductive system defines a unified logic.

If D contains only positive rules, it is C-complete for L, if

a=®Aand Ael”

I—DOZ < i i i
a=0Aand ® A+~p 6B, where © B is an anti-axiom.
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Admissible multiple-alternative rules

An m-rule T/A is admissible for a given unified logic L, if for each
substitution that makes valid all statements from I', at least one
statement from A is valid. v is considered being always valid, and a
is considered being always invalid.
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Admissible multiple-alternative rules

An m-rule T/A is admissible for a given unified logic L, if for each
substitution that makes valid all statements from I', at least one
statement from A is valid. v is considered being always valid, and a
is considered being always invalid.

For instance, a rule [/ is admissible for + if and only if neither
substitution makes valid all statements from T.

Proposition

In any intermediate logic, for any formula A,

rule ®A/a is admissible if and only if rule v/ ® —A is admissible.

The proof of <= is trivial, while = follows immediately from the
Glivenko Theorem.
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Admissible multiple-alternative rules

In terms of admissible rules, we have the following:

(coherency) a logic is coherent if and only if the rule

®p, o
Co:= 2POP

A

is admissible;

(fullness) a logic is full if and only if the rule

v

Fu:=
®p,op

is admissible.
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Admissible multiple-alternative rules

In terms of admissible rules, we have the following:

(coherency) a logic is coherent if and only if the rule

®p, o
Co:= 2POP

A

is admissible;

(fullness) a logic is full if and only if the rule

v

Fu:=
®p,op

is admissible.

In what follows, the above m-rules play the central role.

For convenience, we use the notation:

_ |eA, when a =®A
o=
@A, when a = 6A.
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Admissible multiple-alternative rules

Let L be a standard logic. Then, the following holds: for any finite
sets I, A and any statement q,

is admissible;

) a,l . ..
if the rule —— is admissible, then the rule
A a,

if the rule L is admissible, then the rule %F is admissible.
a?
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Admissible multiple-alternative rules

Let L be a standard logic. Then, the following holds: for any finite
sets I, A and any statement q,

if the rule a;r is admissible, then the rule _rA is admissible;
a?
) r. . a,l | .
if the rule —— is admissible, then the rule —— is admissible.
a, A A

In other words, one can move a statement from premises to
alternatives, or vice-versa, with changing the "sign" of the
statement.
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Admissible multiple-alternative rules

Let L be a standard logic. Then, the following holds: for any finite
sets I, A and any statement q,

if the rule a;r is admissible, then the rule _rA is admissible;
a?
) r. . a,l | .
if the rule —— is admissible, then the rule —— is admissible.
a, A A

In other words, one can move a statement from premises to
alternatives, or vice-versa, with changing the "sign" of the
statement. For logics without rejection the above makes no sense.
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Admissible multiple-alternative rules

Let L be a standard logic signature of which contains —. If Modus
Ponens is admissible for L, then, all the following eight variations of
Modus Ponens are admissible:

v . ep Ce(p—q). oq .
ep,o(p—q),®q ©(p—q),®q ©p,&q  ©p,e(p—>q)

ep,®(p—~>q) ®p,6q ®(p—q),oq ®p,&(p—q),eq
®q "e(p-q) op ' s
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Admissible multiple-alternative rules

Let L be a standard logic signature of which contains —. If Modus
Ponens is admissible for L, then, all the following eight variations of
Modus Ponens are admissible:
v . ep  e(p-q). °q
ep,o(p—q),®q ©(p—q),®q ©p,&q  ©p,e(p—>q)

ep,®(p—~>q) ®p,6q ®(p—q),oq ®p,&(p—q),eq
®q "e(p-q) op ' s
By the same argument, for the rule of substitution we have two

variations that are either simultaneously admissible, or
simultaneously not admissible:

®A  o0(A)
oo(A) oA
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Derivations of rules

Let R be a set of rules and r:=T/A be a rule. We say that r is
derivable from R (in symbols R+ r), if there is a (I, R)-inference
all leaves of which do not contain statements not from A.
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from 1’ relative to R (in symbols r’ Fg r), if
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r' r r means that in any inference, every application of rule r can
be replaced with the suitable applications of rules R and r’. In other

words, rule r can be eliminated from any inference and replaced by
rules R, r'.
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Derivations of rules

Let R be a set of rules and r:=T/A be a rule. We say that r is
derivable from R (in symbols R+ r), if there is a (I, R)-inference
all leaves of which do not contain statements not from A.

If R is a set of rules and r,r’ are rules, we say that r is derivable
from 1’ relative to R (in symbols r’ Fg r), if

/
R,r .

r' r r means that in any inference, every application of rule r can
be replaced with the suitable applications of rules R and r’. In other
words, rule r can be eliminated from any inference and replaced by
rules R, r'.

The rules Co and Fu allows to derive the different variations of the
given rules from each other. Let

S := {Co, Fu}.
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Reduction of Rs to Sb

Proposition. Sb g Rs.

oo (A)

Fu ’—'—‘
oA @A
‘ Sb

®o(A)
‘ Co
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Reduction of Rs to Sb

Proposition. Sb g Rs.

v

oo (A)

Fu ’—'—‘
oA A
‘ Sb
®o(A)
‘ Co

A

Thus, in each deductive system that has postulated rules Co, Fu
and Sb, the rule Rs can be eliminated.
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Reduction of Rs to Sb

Proposition. Sb g Rs.
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Thus, in each deductive system that has postulated rules Co, Fu
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L-complete systems

Proposition. MP g MT.

®(A— B)

eB

Fu ’—I—‘
®A oA
MP‘

®B
Co
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L-complete systems

Theorem

Let D be a deductive system containing only positive rules and the
rule of substitution. Then, if D is C-complete for a unified logic L,
the system D' obtained from D by postulating Co and Fu, is
t-complete.
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L-complete systems

Theorem

Let D be a deductive system containing only positive rules and the
rule of substitution. Then, if D is C-complete for a unified logic L,
the system D' obtained from D by postulating Co and Fu, is
t-complete.

Example

One can take any calculus that defines the classical logic and
contains the rule of substitution, and convert it to a C-complete
deductive system by adding anti-axiom ep. If we add to this
deductive system Co and Fu, we obtain an t-complete system.
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L-complete systems

Moreover, if we take any calculus with the rule of substitution
defining the classical logic, we can convert it into an L-complete
deductive system by adding the rules Co, Fu and r:= @p, ®-p/a.
The needed anti-axiom ©p is derivable:
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Deductive systems

Theorem
For any finite sets of statements [, A and any statement «,

Lo T

A ¢ Aa
and

r o ra

Ao ° A
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Deductive systems

Theorem
For any finite sets of statements [, A and any statement «,

fa T

A ¢ Aa
and

r__ra

Ao ° A
Corollary

Let (I,RUS) be a deductive system defining a unified logic L.
Then there is a system of positive rules R*, such that (I, R* U S)
defines L.
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L-complete system for the Classical Logic

Theorem

The deductive system consisting of the below rules? is t-complete
for the classical logic Cl.

. . &p, d(p—q) _ @ - _ _&(p=(g—n)
(i) Ei=Rgle=d ) li2 = 5lo~a), 8o
(¢) Ecl-= —@‘;BA;B" Ecr = —EB‘;BA;B" Ic = g(';’f;)

- e(pva) - e(pva) - 8(p=r).8(q=r)
(d) Edl==&7 Edr= =5 ld = =sva-n
(n) En-= —@p’?ﬁp In= o 'GB—|p
(r) Co= o2 Fu-ass | Sb=aom

“The positive m-rules that define the positive part of Cl are are similar to
m-rules from Shoesmith and Smiley, Multiple-conclusion logic,2008.
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Final remarks

The rule v/ @ p,op (and not the v/ @ p,®-p, or v/ & (pV -p))
expresses the Law of Excluded Middle. The Law of Excluded Middle
is not about disjunction and negation: you may have it for the
systems without disjunction and negation. The Law of Excluded
Middle means that

One always can assert or reject any given proposition.
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Final remarks

The rule v/ @ p,op (and not the v/ @ p,®-p, or v/ & (pV -p))
expresses the Law of Excluded Middle. The Law of Excluded Middle
is not about disjunction and negation: you may have it for the
systems without disjunction and negation. The Law of Excluded
Middle means that

One always can assert or reject any given proposition.

Accordingly, the rule ®@p,©p/a expresses the Law of
Non-Contradiction, which is not about conjunction and negation; it
means that

One cannot assert and reject the same proposition at the same
time.
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Thanks

Thank you for your patience and attention.

Alex Citkin
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