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In 1979 D.E. Over proposed game theoretical semantics for first-degree entailment
formulated by Anderson and Belnap. In order to extend this approach to include other
systems of relevant logc (e.g., R) we have two promoting facts. Firstly, there is Routley-
Meyer’s situational semantic for system R of relevant logic. Secondly, this semantics
shows some resemblance with Wójcicki’s situational semantic of non-fregean logic for
which the situational game semantics was developed by author exploiting essentially the
notion of non-fregean games. In the paper an attempt is done to give a partial account of
these results and some conception of situational games developed which laid down into
foundation of the game theoretical semantics of relevant logic R.
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1. Introduction: situational games and relevant logic
In 1979 D.E. Over introduced game theoretical semantics for first-degree
entailments (i.e. sentences of the form (φ → ψ) in which neither φ nor
ψ contains →) formulated by Anderson and Belnap [4]. According to Over
there are to be two players in a game, White and Black, who make assertions
according to the following rules:

(R1) If a player asserts (φ∧ψ), then he must assert φ or ψ at his opponent’s
choice.

(R2) If a player asserts (φ ∨ ψ), then he must assert φ or ψ at his own
choice.

(R3) If a player asserts ¬(φ ∧ ψ), then he must assert (¬φ ∨ ¬ψ).
1This study comprises research findings from the “Game-theoretical foundations of
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(R4) If a player asserts ¬(φ ∨ ψ), then he must assert (¬φ ∧ ¬ψ).

(R5) If a player asserts ¬¬φ, then he must assert φ.

The following rule for tautological entailment should be also added to
(R1) − (R5):

(R6) If a player asserts (φ → ψ), and another player asserts φ, then the
first player must assert ψ.

Troubles with extending of Over’s approach (as well as the other
writer’s approaches) to another relevance systems are connected with the
lack of idea of the common game rule for relevant implication in that
semantics (differs from the case of tautological entailment).

Yet apparently there are two directions of solving this problem which
deserves to be inspected. Firstly, there is well-known Routley-Meyer’s type
situational semantic for system R of relevance logic and this semantics
have much in common with Wojcicki’s situational semantics of non-fregean
logic. On the base of non-fregean situational semantics the situational game
semantics was proposed [5] which essentially exploits the notion of so-
called non-fregean games. So, attempting to find a partial account of these
circumstances we can try to develope some conception of situational relevant
games which would be laid down into foundation of the hypothetical game
theoretical semantics of relevance logic.

Secondly, for Dishkant modal quantum logic [1] relational ternary
semantics was introduced which partially (in bivalent case) coincides with
the semantics for R and on this basis a game theoretical semantics was
developed [6]. This also prompts us to relay on yielding game theoretical
semantic for logic R.

Some resemblance of approaches proposed in both cases can be induced
by the pure logical reasons. As it well-known, according to Anderson-
Belnap’s ZDF theorem [2, p. 30] the zero-degree formulas (those containing
only the connectives ∧, ∨, ¬) provable inR (orE) are precisely the theorems
of classical logic. But non-fregean logic also contains calssical logic being its
conservative extension.

Furthemore, since there is a situational semantics for R then a
connective of relevant implication is determined by the conditions on the
situations. But the same is true for the connective of so-called ’referential
involvement’ ⇒ which could be construed as non-fregean situational
implication (cf. [5]). And then the counterpart of the axiom of self-
implication A→ A is given by the non-fregean axiom A⇒ A.
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The same way the replacement theorem in R [2, p.26] (A↔ B) ∧ t→
(χ(A) ↔ χ(B)) where χ(A) is any formula with perhaps some occurrences
of A and χ(B) is the result of perhapls replacing one or more of those
occurrences by B2 is similar with non-fregean axiom (A ⇒ B) ∧ t →
(φ(A) ⇒ φ(B)).

Such similarity does not warrants complete resemblance of R and non-
fregean logic and, strictly saying, it does not exist indeed. Distinction and
resemblance could be assessed rather on the level of situational semantics
which we have in our disposal for both systems.

2. Situational semantics for R
The conception of a situation for the system R is given by means of the
notion of state of affairs. A state of affairs (SOA) is a fact-like entity and
it is what makes statements true at situations. From Edwin Mares’ point
of view from whose book [3, p. 61] we borrowed this definition SOA is just
a sequence of the form:

⟨P, e1, . . . , en⟩

where P is a relation of type (τ1, ..., τn) and each ei is an entity of the
corresponding type τi. A sequence is just a set theoretic construct — it is
an ordered set. SOA represents features or facts about worlds. But to do it
accurately we need rather change such a definition:

A SOA,< P, e1, ..., en > accurately represents a fact at a world w
if and only if P (e1, ..., en) ∈ w.

This definition does not assume that in addition to worlds there are
atomic facts. It might be that worlds themselves are each one big fact.
Subworld facts do not play any role in this theory.

As will readily be observed, states of affairs are similar to the atomic
situations in non-fregean logic. A set of states of affairs, as in case of the set
of situations for non-fregean logic, can be a non-well-founded set with all its
merits and demerits. But Mares maintains that his further framing might
manage without such sophistication being asccomplished in the framework
of standard set theory.

A situation is an ordered pair s = (SOA(s), R(s)). SOA(s) is a set of
states of affairs; these are the states of affairs that obtain at s. R(s) is a
set of ordered pairs. (t, u) is in R(s) if and only if Rstu holds in our frame.
Thus, the set of situations itself determines which situations are related

2One clear role of the conjoined t is to imply χ → χ when χ (or χ(A)) contains no
occurrences of A or does but none of them is replaced by B.
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to which in the frame. Mares supposes that we need non-well-founded set
theory for this construction because for each situations s, Rsss. This means
that (s, s) is in R(s) and so, s is not a well-founded set.

We say that s � t if and only if SOA(s) ⊆ SOA(t) and R(t) ⊆ R(s).
The first half of this definition seems obvious. If a situation s contains
less information than t, then all of the states of affairs that hold in s also
hold in t. The second half might seem less intuitive, but it says something
similar. The fewer pairs of situations related to a given situation u, the more
implicational propositions hold at u. Thus, if R(t) is a subset of R(s) then
at least as many implications hold at t as hold at s.

After defining in such a way the notion of situation we can immediately
proceed with the description of situational semantics which in some respects
will be similar to that for Dishkant logic. We start from the definition of
the frame [3, p. 210].

An R-frame is a quadruple ⟨Sit, Logical, R,C⟩ such that Sit is a non-
empty set, Logical is a non-empty subset of Sit, and R is a three-place
arbitrary place relation on Sit, C is a binary relation on Sit, which satisfies
the following definitions and postulates:

• s � t =def ∃x(x ∈ Logical & Rxst);

• R1stu =def Rstu;

• Rn+1s1...sn+2t iff ∃x(Rns1...sn+1x & Rxsn+2t), for n ≥ 1;

• if Rn...si, si+1...t, then Rn...si+1, si...t;

• if Rn...si...t, then Rn+1...sisi...t;

• Rsss;

• for each situation s there is a unique �-maximal situation s∗ such
that Css∗;

• if Rstu, then Rsu∗t∗;

• s∗∗ = s;

• if s� t, then t∗ � s∗;

• If Rbcd and a� b, then Racd.
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Note that worldly situations play no role in this model theory. We
can add them. In fact, we can replace the class of logical situations in the
specification of a frame with the class of worldly situations and specify that
for each worldly situation s, if Cst, then t� s.

Now we proceed with the description of situational model for R. A
model for R is a pair ⟨A, v⟩ where A is an R-frame and v is a value
assignment from propositional variables into Sit2 such that it satisfies
hereditariness, that is, if s ∈ v(p) and s � t, then t ∈ v(p). Each value
assignment v determines an interpretation I associated with v, such that:

• I(p, a) = T iff a ∈ v(p);

• I(A ∧B, s) = T iff I(A, s) = T and I(B, s) = T ;

• I(A ∨B, s) = T iff I(A, s) = T or I(B, s) = T ;

• I(¬A, s) = T iff ∀x(Csx ⊃ I(A, x) = F );

• I(A→ B, s) = T iff ∀x∀y(Rsxy & I(A, x) = T ⊃ I(B, y) = T ).

Comparing given situational semantics with that for non-fregean logic
and that for Dishkant logic one can conclude that these three semantics
share some common features. So, for example, R-frame and LQ-frame
have, in principle, the same postulates for ternary relation R, the notion
of situation for non-fregean logic coincides with the state of affairs in
situational R-semantics etc. But the difference is also evident.

Proposition 1. A formula F is valid in R if and only if F is valid in all
those R-frames ⟨K,O,R,C⟩ where K is finite.

Proof. Let Π = ⟨K,O,R,C, I⟩ and let VF = {p1, ..., pn} be the
propositional variables occurring in F . Moreover, let BF be the set of all
bi-valued assignments IF : VF → {0, 1}. We write IaF if ∀p ∈ VF (IF (p) =
I(p, a)) and define a new model Πf = ⟨Kf , O

′, R′, C ′, I ′⟩ as follows:

• Kf = {IF ∈ BF : ∃a ∈ K : IF = IaF }

• I ′(p, IF ) = I(p, a),where IF = IaF

• R′ ⊆ Kf × Kf × Kf where we take R′IaF I
b
F I

c
F as corresponding to

Rabc.
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We can uniquely extend this to all subsets of Kf . It is straightforward to
check that for a ∈ O I(F, a) = I ′(F, IF ). Thus we have shown that in
evaluating F it suffices to consider Πf with at most 2p(F ) where p(F ) is the
number of different propositional variables occurring in F . 2

3. Situational game theoretical semantics for R
Finally, bearing in mind game theoretical semantics for non-fregean logic
and that for Dishkant logic, we can introduce game theoretical semantics
for R.

Assume that two players agree to pay 1e to the opponent player for
each assertion of an atomic statement, which is false in any a ∈ Sit according
to a randomly chosen set of situations. More formally, given a set of all
situations K the risk value ⟨x⟩K associated with a propositional variable x
is defined as ⟨x⟩K = |{s : I(x, s) = 0}| i.e. the quantity of situations for
which x is false.

Let x1, x2, ..., y1, y2... denote atomic statements, i.e. propositional
variables. By [x1, ..., xm||y1, ..., yn] we denote an elementary state in the
game where the 1st — the first player — assert each of the yi in the multiset
{y1, ..., yn} of atomic statements and the 2nd — the second player — assert
each atomic statement xi ∈ {x1, ..., xm}. The risk associated with a multiset

X = {x1, ..., xm} of atomic formulas is defined as ⟨x1, ..., xm⟩K =
m∑
i=1

⟨xi⟩K .

The risk ⟨⟩K associated with the empty multiset is 0. ⟨V ⟩K respectively
denotes the average amount of payoffs that the 1st player expect to have to
pay to the 2nd player according to the above arrangements if he/she asserted
the atomic formulas in V . The risk associated with an elementary state
[x1, ..., xm||y1, ..., yn] is calculated from the point of view of the 1st player
and therefore the condition ⟨x1, ..., xm⟩K ≥ ⟨y1, ..., yn⟩K (success condition)
expresses that the 1st player do not expect any loss (but possibly some gain)
when betting on the truth of atomic statements.

Now we accept the following game rules:

(R∧) if a player asserts (A ∧B) in a situation a, then he must assert A in
a situation a or B in a situation a at his opponent’s choice;

(R∨) if a player asserts (A ∨B) in a situation a, then he must assert A in
a situation a or B in a situation a at his own choice;

(R→) if a player asserts (A → B) in a situation a, and another player
asserts A in a situation b, then the first player must assert B in a
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situation c whenever Rabc for any situations b, c. And vice versa, i.e.
for the roles of the players switched.

A player may also choose not to attack the opponent’s assertions of
A → B. The rule reflects the idea that the meaning of implication entails
the principle that an assertion of “If A then B” obliges one to assert also B
if the opponent in a game grants (i.e., asserts) A;

(R¬) if a player asserts ¬A in a situation a, then another player asserts
A in a situation a∗. And vice versa, i.e. for the roles of the players
switched.

Henceforth we will use Aa as shorthand for ‘A holds at the situation a’
and speak of A as a formula indexed by a, accordingly. Note, that we have
to deal with indexed formulas also in rules (R→) and (R¬). However, we
don’t have to change the rule itself, which will turn out to be adequate
independently of the kind of evaluation that we aim at in a particular
context. We only need to stipulate that in applying (R→) the situational
index of A→ B (if there is any) is used for defininig the respective indexes
for the subformulas A and B.

We use [Aa1
1 , ..., A

am
m ||Bb1

1 , ..., B
bn
n ] to denote an arbitrary (not

necessarily elementary) state of the game, where {Aa1
1 , ..., A

am
m } is the

multiset of formulas that are currently asserted by the second player, and
{Bb1

1 , ..., B
bn
n } is the multiset of formulas that are currently asserted by the

first player. (We don’t care about the order in which formulas are asserted.)
A move initiated by the 1st player (1st-move) in state [Γ||∆] consists

in his/her picking of some non-atomic formula Aa from the multiset Γ and
proceeding as follows:

• if Aa = (A1 → A2)
a then the 1st may either attack by asserting Ab

1

in order to force the 2nd to assert Ac
2 in accordance with (R→), or

admit Aa. In the first case the successor state is [Γ′, Ac
2||∆, Ab

1], in the
second case it is [Γ′||∆], where Γ′ = Γ − {Aa};

• if Aa = (¬A1)
a then the 1st chooses the point a∗ thus forcing the

2nd to assert Aa∗
1 . The successor state is [Γ, Aa∗

1 ||∆′], where ∆′ =
∆ − {Aa}.

A move intiated by the 2nd player (2nd-move) is symmetric, i.e., with the
roles of the 1st and the 2nd interchanged. A run of the game consists in a
sequence of states, each resulting from a move in the immediately preceding
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state, and ending in an elementary state [xa11 , ..., x
am
m ||yb11 , ..., ybnn ]. The 1st

player succeed in this run if this final state fulfills the success condition, i.e.,
if

(1)
n∑

j=1

⟨ybjj ⟩K −
m∑
i=1

⟨xaii ⟩K ≤ 0.

The term at the left hand side of inequality is an expected loss of the 1st
player at this state. In other words, the 1st succeed if its expected loss is 0
or even negative, i.e., in fact a gain. The other connectives can be reduced
to implication and negation.

4. Adequacy of the game
To show that the considered game indeed characterizes logic R, we have to
analyse all possible runs of the game starting with some arbitrarily complex
assertion by the 1st player. A strategy for the 1st player will be a tree-like
structure, where a branch represents a possible run resulting from particular
choices made by the 1st player, taking into account all possible choices of
the 2nd player in (2- or 1-moves) that are compatible with the rules. We will
only have to look at strategies for the 2nd player and thus call a strategy
winning if the 1st player succeed in all corresponding runs (according to
condition (2)).

Taking into account that by Proposition 1 above we can assume
that the set Sit of situations is finite. The construction of strategies can be
viewed as systematic proof search in an analytic tableau calculus with the
following rules:

[Γ||∆, (A1 ∧A2)
a]

[Γ, Aa
1||∆]

(∧1
1st)

[Γ||∆, (A1 ∧A2)
a]

[Γ, Aa
2||∆]

(→2
1st)

[Γ||∆, (A1 ∧A2)
a]

[Γ, Aa
1||∆] | [Γ, Aa

2||∆]
(∧2nd)

[Γ||∆, (A1 ∨A2)
a]

[Γ||∆, Aa
1]

(∨1
2nd)

[Γ||∆, (A1 ∨A2)
a]

[Γ||∆, Aa
2]

(∨2
2nd)

[Γ||∆, (A1 ∨A2)
a]

[Γ||∆, Aa
2] | [Γ, Aa

2||∆]
(∨1st)

[Γ, (A1 → A2)
a||∆]

[Γ, Ac
2||∆, Ab

1]
(→1

1st)

[Γ, (A1 → A2)
a||∆]

[Γ||∆]
(→2

1st)
[Γ||∆, (A1 → A2)

a]

[Γ, Ab
1||∆, Ac

2] | [Γ||∆]
(→2nd)
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[Γ||∆, (¬A)a]

[Γ, Aa∗ ||∆]|
(¬2nd)

[Γ, (¬A)a||∆]

[Γ||∆, Aa∗ ]
(¬1st)

In all rules a can denote any index and for any b, c we have Rabc. Note
that, in accordance with the definition of a strategy for the 2nd player,
his/her choices in the moves induce branching, whereas for the 1st player
choices a single successor state that is compatible with the game rules is
chosen.

Theorem 1. A formula F is valid in R if and only if for every set K of
situations the 1st player have a winning strategy for the game starting in
game state [||F ].

Proof. Every run of the game is finite. For every final elementary state
[xa11 , ..., x

am
m ||yb11 , ..., ybnn ] the success condition says that we have to compute

the risk
n∑

j=1
⟨ybjj ⟩K−

m∑
i=1

⟨xaii ⟩K , where ⟨ra⟩K = I(r, a), and check whether the

resulting value (in the following denoted by ⟨xa11 , ..., xamm ||yb11 , ..., ybnn ⟩) is ≤ 0
to determine whether the 1st player ‘win’ the game. To obtain the minimal
final risk of the 1st player (i.e., his/her minimal expected loss) that the 1st
can enforce in any given state s by playing according to an optimal strategy,
we have to take into account the supremum over all risks associated with
the successor states to s that you can enforce by a choice that you may
have in a (2nd- or 1st-)move s. On the other hand, for any of the 1st player
choices the 1st can enforce the infimum of risks of corresponding successor
states. In other words, we prove that we can extend the definition of the
1st expected loss from elementary states to arbitrary states such that the
following conditions are satisfied:

(4.1) ⟨Γ, (A→ B)a||∆⟩K = inf{⟨Γ||∆⟩K , ⟨Γ, Bc||Ab,∆⟩K : Rabc}

(4.2) ⟨Γ, (¬A)a||∆⟩K = sup{⟨Γ||∆, Aa∗⟩K}

(4.3) ⟨Γ, (A ∧B)a||∆⟩K = inf{⟨Γ, Aa||∆⟩K , ⟨Γ, Ba||∆⟩K}

(4.4) ⟨Γ, (A ∨B)a||∆⟩K = sup{⟨Γ, Aa||∆⟩K , ⟨Γ, Ba||∆⟩K}

for assertions by the 2nd player and, for assertions by the 1st player:

(4.5) ⟨Γ||(A→ B)a,∆⟩K = sup{⟨Γ, Ab||Bc,∆⟩K , ⟨Γ||∆⟩K : Rabc}

(4.6) ⟨Γ||∆, (¬A)a⟩K = inf{⟨Γ, Aa∗ ||∆⟩K}⟩



Game Theoretical Semantic for Relevant Logic 51

(4.7) ⟨Γ, (A ∧B)a||∆⟩K = sup{⟨Γ||Aa,∆⟩K , ⟨Γ||Ba,∆⟩K}

(4.8) ⟨Γ, (A ∨B)a||∆⟩K = inf{⟨Γ||Aa,∆⟩K , ⟨Γ||Ba,∆⟩K}.

We have to check that ⟨.||.⟩K is well-defined; i.e., that conditions above
together with the definition of my expected loss (risk) for elementary states
indeed can be simultaneously fulfilled and guarantee uniqueness. To this
aim consider the following generalisation of the truth function for R to
multisets G of indexed formulas:

I(Γ)K =def
∑
A∈Γ

a∈dom(I(A))

I(A, a)

Note that
I({A})K = I(A)K =def

∑
A∈Γ

a∈dom(I(A))

I(A, a) = 1 iff ⟨||A⟩K ≤ 0,

that is, A is valid in R iff my risk in the game starting with my assertion
of A is non-positive. Moreover, for elementary states we have

⟨xa11 , ..., xamm ||yb11 , ..., ybnn ⟩K = n−m.
We generalize the risk function to arbitrary observation states by
⟨Γ||∆⟩∗K =def |∆| − |Γ|

and check that it satisfies conditions (4.1)–(4.8). We only spell out two cases.
In order to avoid case distinctions let I(Aa)K = I(A, a). For condition (4.1)
we have

⟨Γ, (A→ B)a||∆⟩∗K = |∆| − |Γ| − 1 + I(A→ B, a) =

= ⟨Γ||∆⟩∗K − 1 + I(A→ B, a) = ⟨Γ||∆⟩∗K − 1 + (I(A, a) ⇒ I(B, a)) =

= ⟨Γ||∆⟩∗K − inf{1, 1 − I(A, a) + I(B, a)} =

= ⟨Γ||∆⟩∗K − inf{1, 1 + ⟨Bc||Ab⟩∗K} =

= ⟨Γ||∆⟩∗K + inf{0, ⟨Bc||Ab⟩∗K} = inf{⟨Γ||∆⟩∗K , ⟨Γ, Bc||Ab,∆⟩∗K}.

For condition (4.2) we have

⟨Γ||∆, (¬A)a⟩∗K = |∆| − |Γ| − 1 + I(¬A, a) = ⟨Γ||∆⟩∗K − 1 + I(¬A, a) =

= ⟨Γ||∆⟩∗K − 1 + sup(1 − I(A, a∗)) = sup{⟨Γ||∆, Ac∗⟩∗K}.

2

Let us define a regulation as assignment of labels ‘the 2nd player move
next ’ and ‘the 1st player move nex t’ to game states that obviously constrain
the possible runs of the game. A regulation is consistent if the label ‘2nd(Ist)
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move next ’ is only assigned to states where such a move is possible, i.e.,
where 1st player (2nd player) have asserted a non-atomic formula. As a
corollary to our proof of Theorem, we obtain:

Corollary 1. The total expected loss ⟨Γ||∆⟩∗K that the 1st player can
enforce in a game over K starting in state [Γ||∆] only depends on Γ,∆
and K. In particular, it is the same for every consistent regulation that may
be imposed on the game.
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