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abstract. Recently some elaborations were made concerning
the game theoretic semantic of  Lℵ0 and its extension. In the paper
this kind of semantics is developed for Dishkant’s quantum modal
logic  LQ which is also, in fact, the specific extension of  Lℵ0 . As
a starting point some game theoretic interpretation for the S L
system (extending both  Lukasiewicz logic  Lℵ0 and modal logic S5)
was exploited which has been proposed in 2006 by C. Fermüller
and R. Kosik. They, in turn, based on ideas already introduced
by Robin Giles in the 1970th to obtain a characterization of  Lℵ0

in terms of a Lorenzen style dialogue game combined with bets on
the results of binary experiments that may show dispersion.

Keywords:  Lukasiewicz’s logic, quantum loigic, dialogue games,
risk value

1 Introduction
In [4],[5] Robin Giles determines a logic for reasoning about physical
theories with dispersive experiments, meaning that repeated trials
of the same experiment may yield different results. Giles refers
to Lorenzen’s dialogue games for intuitionistic and classical logic
which systematically reduce arguments involving logically complex
assertions to arguments about atomic assertions.

In the issue Robin Giles formally defined a characterization of
infinite-valued Lukasiewicz logic in terms of a game that combines
dialogue rules for logical connectives with a scheme for betting on
results of dispersive experiments for evaluating atomic propositions.

1This study comprises research findings from the ‘Game-theoretical
foundations of pragmatics’ Project № 12-03-00528 carried out within The
Russian Foundation for Humanities Academic Fund Program.
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In this connection it is interesting that Herman Dishkant introduced
the modal extension of  Lukasiewicz’s infinite-valued logic which al-
lows to consider physical objects obeying to the rules of quantum
mechanics. This suggests to extend Giles’ method to Dishkant’s
logic for obtaining a characterization of that in terms of a dialogue
game too. The starting position and conditions in this case would
be as follows.

The main idea of H. Dishkant’s quantum modal logic ( LQ) [1] is
to include Mackey’s axioms for probabilities of quantum-mechanical
experiments [6] into the calculus of  Lukasiewicz’s infinite-valued
logic  Lℵ0 treating probabilities as truth-values. It is done not
directly and Mackey’s construction plays the role of a leading idea
only and resulting calculus is, in essence, a modal extension of
 Lukasiewicz logic where the last is enriched with the modal symbol
Q and four modal inference rules. The proposition QA expresses
such a property which can be observed and the presence of which
confirms A (‘A is confirmed by observation’).

The system  LQ contains four axioms and five rules of inference:

A1. A→ (B → A)

A2. (A→ B) → ((B → C) → (A→ C))

A3. ((A→ B) → B) → ((B → A) → A)

A4 (¬A→ ¬B) → (B → A)

B5.
A,A→ B

B

B6.
A

QA

B7.
A

¬Q¬A

B8.
A→ B

QA→ QB
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B9.
QA→ QB

(QB → QA) ↔ Q(QB ⊃ QA)

where A ⊃ B =def (¬A→ B) → B.

Semantically Dishkant’ system  LQ would be interpreted in the
following way. Usually a quantum object is described by a wave
function — by a unit vector of a complex Hilbert space HR. Let
Ψ be the set of all states of an object and besides these states we
consider also questions which are described by closed subspaces of
HR. Each such closed subspace p̂ determines a probability p(ψ) of
a positive answer to the question for any ψ ∈ Ψ. It is known that
this probability is equal to the squared modulus of the projection
of ψ on the subspace p̂, i.e. p(ψ) = |ψp̂|2.

Since p̂1 ̸= p̂2 ⇒ p1 ̸= p2 then we do not identify the question
with the corresponding function of HR but with the corresponding
function p : Ψ → [0, 1] for which there exists such p̂ that p(ψ) =
|ψp̂|2. Here [0, 1] is the closed segment of real numbers.

Let P be the set of all questions and for any p ∈ P let p̂ be the
corresponding subspace of HR. We call any function g : Ψ → [0, 1]
a generalized question and the set of all generalized questions will
be denoted by S. Obviously P ⊂ S. The set S is partially ordered
by the relation ≤ which is defined by

g ≤ h =def ∀ψ(q(ψ) ≤ h(ψ)) for any g, h ∈ S.

Now let us fix a function q : S → P satisfying the conditions

q1. g ≤ h⇒ q(g) ≤ q(h)

q2. q(p) = p

for any g, h ∈ S; p ∈ P. It is easy to see that there is at least such
a function q (e.g. one may take q(g) equal to that p for which p̂ is
the minimal subspace containing all ψ ∈ Ψ for which q(ψ) = 1).

Any function ID : W 0 → S is an interpretation of  LQ if it satisfy
the following conditions:

(I) ID(A→ B) = min(1, 1 − ID(A) + ID(B));
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(II) ID(¬A) = 1 − ID(A);

(III) ID(QA) = q(ID(A))

for any A,B ∈ W 0, where W 0 — a set of formulas of  LQ. Here 1 :
Ψ → {1}, where Ψ is a set of all states of an object. It is obvious that
ID may be defined on V (the infinite list of propositional variables)
arbitrarily and then extended uniquely on W 0, if q is fixed.

It seems that under such definition q plays for modal formules
the same role as Mackey’s function r which assigns to every triple
(A,α,E) (where A is an observable, α is a state and B is a Borel
subset of the real line) the number r(A,α,E), 0 ≤ r(A,α,E) ≤ 1.
So, we can treat W 0 as the set of observables, dom(S) as the set of
states and rng(S) as the set of all Borel subsets of the real line.

The following result holds for such an interpretation ID[1, p. 152]:

Theorem 1. For any A ∈ W 0, if ⊢ A then ID(A) = 1 for any
intepretation ID.

The weak completeness (semantic correctness) of  LQ was proved
just relative to the usual quantum propositional logic QPL (by em-
bedding QPL in  LQ). In view of this the problem was formulated
to construct semantic model like those of Kripke–Grzegorczyk but
for  LQ. In [7] such Kripke-type model for  Lℵ0 was yielded where an
accessibility relation is a ternary one and in [8, p. 67] such model
was extended to  LQ and the soundness and completeness of  LQ in
respect to those was proved.

According to [8] the ternary semantic of  LQ would be described
as follows.  L-frame is a quadruple ⟨O,K,R,∗ ⟩ where K is non-
empty set of observation points (states), O ∈ K, R is a ternary
accessibility relation on K and ∗ — a unary operation on K. The
following conditions for R and ∗ are satisfied:

(p1) ROaa

(p2) Raaa

(p3) R2abcd⇒ R2acbd

(p4) R2Oabc⇒ Rabc

(p5) Rabc⇒ Rac∗b∗
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(p6) a∗∗ = a

(p7) ROab⇒ ROba

(q1) Rabc⇒ Rbac

(d1) a < b =def ROab

(d2) R2abcd =def ∃x(Rabx&Rxcd&x ∈ K).

A valuation v is defined as a mapping assigning the truth value
from truth-value matrix for  LQ to propositional variables in every
point of K accounting the binary relation < from (d1). An inter-
pretation I is a natural extending of v on all formulas of  Lℵ0 under
condition that in any point of K the usual explication of connectives
takes place. The formal definition is as follows:

a) v is a valuation in  L-frame, i.e. v is a function v : V × K →
M[0,1] (where M[0,1] is a logical matrix for  Lℵ0 i.e. M[0,1] =
⟨[0, 1], ¬̄, 7→, {1}⟩ where ¬̄x = 1−x, x 7→ y = min(1, 1−x+y).
For any p ∈ V and any a, b ∈ K the following condition is
satisfied:

(1) a < b&v(p, a) ̸= 0 ⇒ (p, b) ̸= 0;

b) I is an interpretation associated with v, i.e. I is a function I :
W 0 ×K →M[0,1] satisfying for any p ∈ V , A,B ∈W 0, a ∈ K
the following conditions:

(i) I(p, a) = v(p, a);

(ii) I(¬A, a = 1 − x iff I(A, a∗) = x;

(iii) I(A→ B, a) = inf(1, 1− x+ y) iff for any b, c ∈ K, Rabc and

I(a, b) = x⇒ I(B, c) = y.

(iv) I(QA, a) = 1 iff for any b ∈ K(ROab ⇒ ∃c ∈ K(RObc ⇒
I(A, c) ̸= 0)).

The following theorem was proved [8, p. 67]:

Theorem 2. The system  LQ is complete in respect to the ternary
semantic that is for any A ∈W 0, if I(A) = 1 for any intepretation
I then ⊢ A.
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We have the following finite model property.
The junction of both semantics of  LQ can be achieved via putting

for any A ∈ W 0, dom(ID(A)) ⊆ K and rng(ID(A)) ⊆ {I(A, a) :
a ∈ K}, that is, treating the set Ψ as K.

Proposition 1. A formula F is valid in  LQ if and only if F is
valid in all those  L-frames ⟨O,K,R,∗ ⟩ where K is finite.

Proof. Let Π = ⟨O,K,R,∗ , I⟩ and let VF = {p1, ..., pn} be the
propositional variables occurring in F . Moreover, let BF be the set
of all bi-valued assignments IF : VF → {0, 1}. We write IaF if ∀p ∈
V : IF (p) = I(p, a) and define a new model Πf = ⟨O′,Kf , R

′,∗′ , I ′⟩
as follows:

• Kf = {IF ∈ BF : ∃a ∈ K : IF = IaF }

• I ′(p, IF ) = I(p, a),where IF = IaF

• R′ ⊆ Kf × Kf × Kf where we take R′I(a)I(b)I(c) as corre-
sponding to Rabc.

We can uniquely extend this to all subsets of Kf . It is straightfor-
ward to check that I(F,O) = I ′(IOF , F ). Thus we have shown that
in evaluating F it suffices to consider Πf with at most 2p(F ) where
p(F ) is the number of different propositional variables occurring
in F . 2

The analysis shows that we can replace the rule (iv) with the rule
(iv)′ without the loss of the generality :

(iv)′ I(QA, a) = inf{I(A, c) : for any b ∈ K(ROab ⇒ ∃c ∈
K(RObc⇒ I(A, c) ̸= 0}.

Turning back to the game theoretic semantic of  Lℵ0 it is worth
to denote that recently some its extensions were obtained (cf. [2],
[3]). It seems natural to adopt such an approach for producing this
kind of semantics for  LQ which is also, in fact, the specific extension
of  Lℵ0 .
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2 Dialogue Game for  LQ

In 2006 C. Ferműller and R. Kosik [2] proposed some game theoretic
interpretation for the S  L system that extends both Lukasiewicz logic
 Lℵ0 and modal logic S5. It was builded on ideas already introduced
by Robin Giles in the 1970th to obtain a characterization of  Lℵ0

in terms of a Lorenzen style dialogue game combined with bets on
the results of binary experiments that may show dispersion. In [2]
the experiments were replaced by random evaluations with respect
to a given probability distribution over permissible precisifications.
We will try to implement main ideas of interpretation proposed
(respectively modifying it) for obtaining game theoretical semantic
for the  LQ.

Assume that two players agree to pay 1e to the opponent player
for each assertion of an atomic statement, which is false in any
a ∈ K according to a randomly chosen set of observation points.
More formally, given a set of all observation points K the risk value
⟨x⟩K associated with a propositional variable x is defined as ⟨x⟩K =
ID(x). In fact, ⟨x⟩K corresponds to the probabilities of having to
pay 1e, when asserting x.

Let x1, x2, ..., y1, y2... denote atomic statements, i.e. propositional
variables. By [x1, ..., xm||y1, ..., yn] we denote an elementary state in
the game where the 1st — the first player — asserts each of the yi in
the multiset {y1, ..., yn} of atomic statements and the 2nd — the sec-
ond player — asserts each atomic statement xi ∈ {x1, ..., xm}. The
risk associated with a multiset X = {x1, ..., xm} of atomic formu-

las is defined as ⟨x1, ..., xm⟩K =
m∑
i=1

⟨xi⟩K . The risk ⟨⟩K associated

with the empty multiset is 0. ⟨V ⟩K respectively denotes the average
amount of payoffs that the 1st player expects to have to pay to the
2nd player according to the above arrangements if he/she asserted
the atomic formulas in V . The risk associated with an elementary
state [x1, ..., xm||y1, ..., yn] is calculated from the point of view of the
1st player and therefore the condition ⟨x1, ..., xm⟩K ≥ ⟨y1, ..., yn⟩K
(success condition) expresses that the 1st player does not expect any
loss (but possibly some gain) when betting on the truth of atomic
statements.

Now we accept the following dialogue rule for implication (cf. [2]):
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(R→) If the 1st player asserts A→ B in point a then, whenever the
2nd player chooses to attack this statement by asserting A in
point b, the 1st has to assert also B in point c (the points are
choosing according to the condition (iii) above). (And vice
versa, i.e., for the roles of 1st and the 2nd player switched.)

A player may also choose not to attack the opponent’s assertions
of A→ B. The rule reflects the idea that the meaning of implication
entails the principle that an assertion of ‘If A then B’ obliges one to
assert also B if the opponent in a dialogue grants (i.e. asserts) A.

The dialogue rule for the negation involves a relativization to
specific observation points:

(R¬) If the 1st player asserts ¬A in point a then the 2nd player
chooses to attack this statement by asserting A in point a∗(the
points are choosing according to the condition (iii) above).
(And vice versa, i.e., for the roles of 1st and the 2nd player
switched.)

The dialogue rule for the Q-modality also involves a relativization
to specific observation points:

(RQ) If the 1st player asserts QA then the 1st also have to assert
that A holds (its interpretation differs from 0) at any point
that the 2nd may choose using the condition (iv) above (And
vice versa, i.e., for the roles of the 1st and the 2nd switched.)

Henceforth we will use Aa as shorthand for ‘A holds at the obser-
vation point a’ and speak of A as a formula indexed by a, accord-
ingly. Thus using rule (RQ) entails that we have to deal with in-
dexed formulas also in rule (R→). However, we don’t have to change
the rule itself, which will turn out to be adequate independently of
the kind of evaluation that we aim at in a particular context. We
only need to stipulate that in applying (R→) the observation point
index of A→ B (if there is any) is used for defininig the respective
indexes for the subformulas A and B. If, on the other hand, we
apply rule (RQ) to an already indexed formula (QA)a then the in-
dex a is overwritten by whatever index b is chosen by the opponent
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player; i.e., we have to continue with the assertion Ab and, of course,
we also have to account for indices of formulas in elementary states.
We augment the definition of risk by ⟨xa⟩K = 1 − I(x, a). In other
words, the probability of having to pay 1e for claiming that x holds
at the observation point a is 0 if x is true at a and 1 if x is false
at a.

We use [Aa1
1 , ..., A

am
m ||Bb1

1 , ..., B
bn
n ] to denote an arbitrary (not nec-

essarily elementary) state of the game, where {Aa1
1 , ..., A

am
m } is the

multiset of formulas that are currently asserted by the 2nd player,
and {Bb1

1 , ..., B
bn
n } is the multiset of formulas that are currently as-

serted by the 1st player. (We don’t care about the order in which
formulas are asserted.)

A move initiated by the1st player (1st-move) in state [Γ||∆] con-
sists in his/her picking of some non-atomic formula Aa from the
multiset Γ and proceeding as follows:

• If Aa = (A1 → A2)
a then the 1st may either attack by assert-

ing Ab
1 in order to force the 2nd to assert Ac

2 in accordance
with (R→), or admit Aa. In the first case the successor state
is [Γ′, Ac

2||∆, Ab
1], in the second case it is [Γ′||∆], where Γ′ =

Γ − {Aa}.

• If Aa = (¬A1)
a then the 1st chooses the point a∗ thus forcing

the 2nd to assert Aa∗
1 . The successor state is [Γ, Aa∗

1 ||∆′],
where ∆′ = ∆ − {Aa}.

• If Aa = QBa then the 1st chooses an arbitrary b ∈ K using
the condition (iv) above thus forcing the 2nd to assert Bc.
The successor state is [Γ′, Bc||∆], where Γ′ = Γ − {Aa}.

A move initiated by the 2nd player (2-move) is symmetric, i.e. with
the roles of the 1st and the 2nd players interchanged. A run of the
game consists in a sequence of states, each resulting from a move in
the immediately preceding state, and ending in an elementary state
[xa11 , ..., x

am
m ||yb11 , ..., ybnn ]. The 1st player succeeds in this run if this

final state fulfills the success condition, i.e., if

n∑
j=1

⟨ybjj ⟩K −
m∑
i=1

⟨xaii ⟩K ≤ 0.
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The term at the left hand side of inequality is an expected loss of
the 1st player at this state. In other words, the 1st succeeds if its
expected loss is 0 or even negative, i.e., in fact a gain. The other
connectives can be reduced to implication and negation.

3 Adequacy of the game
To show that the considered game indeed characterizes logic  LQ,
we have to analyse all possible runs of the game starting with some
arbitrarily complex assertion by the 1st player. A strategy for the
1st player will be a tree-like structure, where a branch represents
a possible run resulting from particular choices made by the 1st
player, taking into account all possible choices of the 2nd player
in (2- or 1-moves) that are compatible with the rules. We will
only have to look at strategies for the 2nd player and thus call a
strategy winning if the 1st player succeeds in all corresponding runs
(according to condition (2)).

Taking into account that by Theorem (2) we can assume that the
set K of observation points (states) is finite. The construction of
strategies can be viewed as systematic proof search in an analytic
tableau calculus with the following rules:

[Γ||∆, (A1 → A2)
a]

[Γ, Ab
1||∆, Ac

2] | [Γ||∆]
(→2nd)

[Γ, (A1 → A2)
a||∆]

[Γ, Ac
2||∆, Ab

1]
(→1

1st)
[Γ, (A1 → A2)

a||∆]

[Γ||∆]
(→2

1st)

[Γ||∆, (¬A)a]

[Γ, Aa∗ ||∆]
(¬2nd)

[Γ, (¬A)a||∆]

[Γ||∆, Aa∗ ]
(¬1st)

[Γ||∆, (QA)a]

[Γ||∆, Ac1 ]|...|[Γ||∆, Acn ]
(Q2nd)

[Γ, (QA)a||∆]

[Γ, Ac||∆]
(Q1st)

In all rules a can denote any index. In the rule (Q2nd) as well as
in the rule (Q1st) we assume that indexes c1, ..., cn and c are defined
by means of the condition (iv) above. Note that, in accordance with
the definition of a strategy for the 2nd player, his/her choices in the
moves induce branching, whereas for the 1st player choices a single
successor state that is compatible with the dialogue rules is chosen.
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Theorem 3. A formula F is valid in  LQ if and only if for every
set K of observation points (states) the 1st player have a winning
strategy for the game starting in game state [||F ].

Proof. Every run of the game is finite. For every final elemen-
tary state [xa11 , ..., x

am
m ||yb11 , ..., ybnn ] the success condition says that

we have to compute the risk
n∑

j=1
⟨ybjj ⟩K −

m∑
i=1

⟨xaii ⟩K , where ⟨ra⟩K =

I(r, a) if a /∈ dom(ID(r)) and ⟨ra⟩K = 1 − ID(r)(a) otherwise,
and check whether the resulting value (in the following denoted by
⟨xa11 , ..., xamm ||yb11 , ..., ybnn ⟩) is ≤ 0 to determine whether the 1st player
‘win’ the game. To obtain the minimal final risk of the 1st player
(i.e., his/her minimal expected loss) that the 1st can enforce in any
given state S by playing according to an optimal strategy, we have
to take into account the supremum over all risks associated with the
successor states to S that you can enforce by a choice that you may
have in a (2nd- or 1st-)move S. On the other hand, for any of the
1st player choices the 1st can enforce the infimum of risks of cor-
responding successor states. In other words, we prove that we can
extend the definition of the 1st expected loss from elementary states
to arbitrary states such that the following conditions are satisfied:

(3.1) ⟨Γ, (A→ B)a||∆⟩K = inf{⟨Γ||∆⟩K , ⟨Γ, Bc||Ab,∆⟩K}

(3.2) ⟨Γ, (¬A)a||∆⟩K = sup{⟨Γ||∆, Aa∗⟩K}

for assertions by the 2nd player and, for assertions by the 1st player:

(3.3) ⟨Γ||(A→ B)a,∆⟩K = sup{⟨Γ, Ab||Bc,∆⟩K , ⟨Γ||∆⟩K}

(3.4) ⟨Γ||∆, (¬A)a⟩K = inf{⟨Γ, Aa∗ ||∆⟩K⟩}

Furthermore we have

(3.5) ⟨Γ||∆, (QA)a⟩K = sup
c∈K

ROab⇒RObc

{⟨Γ||∆, Ac⟩K}

(3.6) ⟨Γ, (QA)a||∆⟩K = inf
c∈K

ROab⇒RObc

{⟨Γ, Ac||∆⟩K}
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We have to check that ⟨.||.⟩K is well-defined; i.e., that conditions
above together with the definition of my expected loss (risk)
for elementary states indeed can be simultaneously fulfilled and
guarantee uniqueness. To this aim consider the following generalisa-
tion of the truth function for  LQ to multisets G of indexed formulas:

I(Γ)K =def
∑
A∈Γ

a/∈dom(ID(A))

I(A, a) +
∑
A∈Γ

a∈dom(ID(A))

ID(A)(a)

Note that

I({A})K = I(A)K =
∑

a/∈dom(ID(A))

I(A, a) +
∑

a∈dom(ID(A))

ID(A)(a) = 1 iff ⟨||A⟩K ≤ 0,

that is, A is valid in  LQ iff my risk in the game starting with my as-
sertion of A is non-positive. Moreover, for elementary states we have

⟨xa11 , ..., xamm ||yb11 , ..., ybnn ⟩K = n − m + I(xa11 , ..., x
am
m )K − I(yb11 , ...,

ybnn )K .

We generalize the risk function to arbitrary observation states
by

⟨Γ||∆⟩∗K =def |∆| − |Γ| + I(Γ)K − I(∆)K

and check that it satisfies conditions (3.1)–(3.6). We only spell out
two cases. In order to avoid case distinctions let I(Aa)K = I(A, a).
For condition (3.1) we have
⟨Γ, (A → B)a||∆⟩∗K = |∆| − |Γ| − 1 + I(Γ)K + I(A → B, a)K −
I(∆)K = ⟨Γ||∆⟩∗K − 1 + I(A → B, a) = ⟨Γ||∆⟩∗K − 1 + inf{1, 1 −
I(A, b)+I(B, c)} = ⟨Γ||∆⟩∗K−1+inf{1, 1+⟨Bc||Ab⟩∗K} = ⟨Γ||∆⟩∗K+
inf{0, ⟨Bc||Ab⟩∗K} = inf{⟨Γ||∆⟩∗K , ⟨Γ, Bc||Ab,∆⟩∗K}.

For condition (3.5) we have
⟨Γ||∆, (QA)a⟩∗K = |∆| − |Γ| − 1 + I(Γ)K − I(∆)K − I((QA)a)K =
⟨Γ||∆⟩∗K + 1 − I(QA, a) = ⟨Γ||∆⟩∗K + 1 − inf{I(A, c) : for any
b ∈ K(ROab ⇒ ∃c ∈ K(RObc ⇒ I(A, c) ̸= 0} = ⟨Γ||∆⟩∗K +
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sup{I(A, c) :for any b ∈ K(ROab⇒∃c ∈ K(RObc⇒ I(A, c) ̸=0} =
sup
c∈K

ROab⇒RObc

{⟨Γ||∆, Ac⟩∗K} 2

Let us define a regulation as assignment of labels ‘the 2nd player
moves next ’ and ‘the 1st player moves next ’ to game states that
obviously constrain the possible runs of the game. A regulation is
consistent if the label ‘2nd(Ist) move next ’ is only assigned to states
where such a move is possible, i.e., where 1st player (2nd player)
have asserted a non-atomic formula. As a corollary to our proof of
Theorem (3), we obtain:

Corollary 1. The total expected loss ⟨Γ||∆⟩∗K that the 1st player
can enforce in a game over K starting in state [Γ||∆] only depends
on Γ,∆ and K. In particular, it is the same for every consistent
regulation that may be imposed on the game.
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