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abstract. In this paper implicative fragments of natural three-
valued logic are investigated. It is proved that some fragments are
equivalent by set of tautologies to implicative fragment of classical
logic. It is also shown that some natural three-valued logics verify
all tautologies of classical propositional logic.

Keywords: three-valued logis, natural implication, classical logic,
set of tautologies

1 Introduction
In paper [3] we investigated functional properties of three-valued lo-
gics. We define some conditions for ‘good’ implication and introduce
the idea of natural implication. So, as the result we have class of 30
implications1 with strictly specified natural properties. Extensions
of regular Kleene’s logics by natural implications were regarded.

According to our definition, natural three-valued logic is a logic
which includes natural implication as a connective.

On examination of 30 implicative extensions of weak Kleene’s
logic we received 7 basic logics2:  Lukasiewicz’s logic  L3, paracon-
sistent logic PCont, three-valued Bochvar’s logic B3, logic Z, T3,
T2 and T1. These logics form a lattice w.r.t. relation of functional
inclusion one logic to another.

Thus all these different three-valued systems, which appeared his-
toricaly on different motivations, are presented in the same language

1Truth-tables for natural implications are given in appendix.
2In [4] the functional eqiuvality of some implicative extensions of weak

Kleene’s logic was proved.
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with the following connectives: ∼, ∪ and →, where ∼, ∪ — con-
nectives of weak Kleene’s logic and → — natural implication. It
will allow us to compare these logics by set of tautologies. This
is the next point of our research. And in this paper we focus on
implicative fragments of natural three-valued logics.

2 Basic definitions
For the sake of clarity let us formulate some basic definitions.

Definition 1. The language L→ is a propositional language with
the following alphabet:

(1) p, q, r, . . . — propositional variables;

(2) → — binary logical connective;

(3) (, ) — technical symbols.

Definition 2. A definition of L→-formula is as usual:

(1) if A is propositional variable, then A is L→-formula;

(2) if A and B are L→-formulas, then A→ B is L→-formula;

(3) nothing else is L→-formula.

Definition 3. A logical matrix is a structure M =< V,F,D >,
where V is the set of truth-values, F is a set of functions on V called
basic functions, and D is a set of designated values, D is a subset
of V .

In this paper we will concider the logical matrices, where V =
{1, 1/2, 0} (let denote this set as V3), F consists of one function3 —
natural implication and D = {1} or D = {1, 1/2}.

Let’s recall definition of natural implication:

Definition 4. Implication is called natural if it is satisfied the
following criteria:

(1) C-extending, i.e. restrictions to the subset {0, 1} of V3 coin-
cide with the classical implication.

3When we consider the implicative fragments of natural three-valued logics.
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(2) If p → q ∈ D and p ∈ D, then q ∈ D, i.e. matrices for
implication need to be normal in the sense of  Lukasiewicz-
Tarski (they verify the modus ponens) [2, p. 134].

(3) Let p ≤ q, then p→ q ∈ D.

(4) p→ q ∈ V3, in other cases.

According to the definition of natural implication, there are 6
implications with D = {1} and 24 implications with D = {1, 1/2}
(appropriate truth-tables are given in appendix).

Definition 5. A valuation v of an arbitrary L→-formula A in
M (symbolically — |A|Mv ) is defined as usual: |p|Mv ∈ V3, if p is a
propositional variable; if A and B are L→-formulas, and → is basic
function in M, then |A→ B|Mv = |A|Mv → |B|Mv .4

Definition 6. An arbitrary L→-formula A is a tautologie in M iff
|A|Mv ∈ D for all valuation v in M.

3 Implicative fragments of natural three-valued
logics

Let consider the following matrices which corespond to the implica-
tive fragments of natural three-valued logics:

Mi
→ =< {1, 1/2, 0},→i, {1} >, i ∈ {1, 2, 3, 4, 5, 6},

Mi
→ =< {1, 1/2, 0},→i, {1, 1/2} >, i ∈ {7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28},

M1′
→ =< {1, 1/2, 0},→1, {1, 1/2} >,

M4′
→ =< {1, 1/2, 0},→4, {1, 1/2} >,

where matrix operation → is defined by appropriate truth-tables of
natural implications.

The following tautologies express the fundamental properties of
implication:

4For the clarity we use the same symbols both for language functor (propo-
sitional connective) and corresponding matrix function.



Natural three-valued logics and classical logic 347

K : p→ (q → p)

S : (p→ (q → r)) → ((p→ q) → (p→ r))

S′ : ((p→ q) → r) → ((p→ r) → (q → r))

P : ((p→ q) → p) → p

W : (p→ (p→ q)) → (p→ q)

C : (p→ (q → r)) → (q → (p→ r))

B : (q → r) → ((p→ q) → (p→ r))

And all implicative fragments of natural three-valed logics can be di-
vided into 10 classes according to the fact that implicative formulas
are tautologies in corresponding matrices:

K S S′ P W C B

M1′
→,M

i
→

+ + + + + + +(i ∈ {2, 5, 7, 8, 9, 10, 11, 12, 13

17, 18, 19, 20, 21, 22, 23, 24})

M1
→ + + + − + + +

M25
→ − + + − + + +

M3
→ + − + − − + +

M4
→, M4′

→ − + + − + − +

M27
→ − − + + + − −

M26
→ − + − − + − −

Mi
→ (i ∈ {15, 28}) − − − + + − −

M6
→ − − + − − − −

Mi
→ (i ∈ {14, 16}) − − − − − − −

So, let us consider the class matrices (corresponding to the first
line of table above), in which all given implicative formulas are
tautologies. This class consists of 18 matrices: 2 with D = {1} and
16 with D = {1, 1/2}. We can prove that all these matrices have the
same class of tautologies.

The reasoning is as follows. For example, consider the matrices:
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M7
→ =< {1, 1/2, 0},→7, {1, 1/2} >

M13
→ =< {1, 1/2, 0},→13, {1, 1/2} >

To show that these matrices have the same class of tautologies is
sufficent to prove the following theorem:

Theorem 1. For any L→-formula A, for any valuation v5:

|A|M
7
→

v = 0 iff |A|M
13
→

v = 0.

Proof may be given by induction on the structure of formula A.
Base case. Let A is a propositional variable, then it is obvious

that theorem is true for this case.
Induction step. Let us assume that theorem is true for the formu-

las, that contain less than n occurrence of propsitional connectives
(induction hypothesis). Then it is sufficent to prove, that theo-
rem is true for L→-formula A that contains precisely n occurrence
of propsitional connectives and graphically identical with formula
(B → C), i.e. A P (B → C).

Then, the proof of the theorem reduces to the proof of the fol-
lowing two propositions:

Proposition 1. ∀v∀A : if |A|M
7
→

v = 0, then |A|M
13
→

v = 0.

Proposition 2. ∀v∀A : if |A|M
13
→

v = 0, then |A|M
7
→

v = 0.

Let us present the proof of the Proposition 1.
Proof.

1. Let proposition 1 does not hold – assumption

2. ∃v∃A : |A|M
7
→

v = 0 and |A|M
13
→

v ̸= 0 – from 1

3. |B → C|M
7
→

v∗ = 0 and |B → C|M
13
→

v∗ ̸= 0 – from 2, elimina-

tion of quantifiers

4. |B → C|M
7
→

v∗ = 0 – from 3

5. |B|M
7
→

v∗ →7 |C|M
7
→

v∗ = 0 – from 4, def. 5

6. |B|M
7
→

v∗ ∈ {1, 1/2} and |C|M
7
→

v∗ = 0 – from 5, def. of →7

5As set V3 in M7
→ and in M13

→ is the same, then it is true that any valuation
in M7

→ is valuation in M13
→ and vice versa.
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7. |C|M
7
→

v∗ = 0 – from 6

8. |C|M
13
→

v∗ = 0 – from 7 by induc-

tion hypothesis

9. |B → C|M
13
→

v∗ ̸= 0 – from 3

10. |B|M
13
→

v∗ →13 |C|M
13
→

v∗ ̸= 0 – from 9

11. |B|M
13
→

v∗ = 0 – from 10 and 8,

def. of →13

12. |B|M
7
→

v∗ = 0 – from 11 by induc-

tion hypothesis

13. |B|M
7
→

v∗ ∈ {1, 1/2} – from 6

14. |B|M
7
→

v∗ ̸= 0 – from 13

15. Assumption 1. is incorrect – from 12 and 14

Proposition 1 is proved. 2

The proof of Proposition 2 is analogous to that of Proposition 1.
Thus theorem is proved. 2

By using similar methods of reasoning, it is not difficult to prove
that all 18 matrices (matrices of the first group) have the same set
of tautologies.

Let us investigate these 18 matrices in detail. It is well known
that the implicative fragment of classical logic can be characterized
deductively by the axioms K, S and P and the inference rule modus
ponens. From this point of view each of 18 implcative fragments
discussed above are the classical ones.

Let us consider natural three-valued logics, which implicative
fragments are equivalent to the implicative fragment of classical
logic. Corresponding logical matrices are the following:

Mi =< {1, 1/2, 0},∼,∪,→i, {1} >, i ∈ {1, 5},

Mi =< {1, 1/2, 0},∼,∪,→i, {1, 1/2} >,
i ∈ {2, 7, 8, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24},

where ∼, ∪ are defined like in weak Kleene’s logic, appropriate
truth-tables for →i are given in appendix.
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From functional point of view, these 18 systems correspond to 7
basic logic:

 L3 PCont B3 Z T1 T2 T3

Mi Mi Mi M17 M23 M24 M13

(i ∈ {1, 2, 8, 9, (i ∈ {18, 19, (i ∈ {5, 7})

10, 11, 12} 20, 21, 22}

7 basic logics form the following lattice w.r.t. relation of func-
tional inclusion one logic to another:
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Let us show that a constant ⊥, which interpreted as false-
hood, is defined by the basic functions of the 10 matrices Mi, (i ∈
{1, 2, 5, 7, 8, 9, 10, 11, 12, 13}):

⊥ =∼ (p→i p), i ∈ {1, 2, 5, 7, 8, 9, 10, 11, 12, 13}.

But as follows from Wajsberg’s work [5, § 5] the addition of ⊥ → p
to the axiomatization of implicative fragment of classical logic gives
the full classical propositional logic. Thus 10 natural three-valued
logics, considered above, verify all tautologies of classical proposi-
tional logic.
Remark. In [1, p. 54] by using a computer program it was cal-
culated that there are 18 C-extending isomorphs of classical logic,
which verify modus ponens. So, it was found that in matirces corre-
sponding to these isomorphs one of the basic functions — implicative
function, is defined precisely by the same truth-tables of natural im-
plications, as in 18 natural three-valued logics mentioned above.
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Appendix. Truth-tables for natural implications
Let us give truth-tables for natural implications according to the
definition 4.

There are 6 implications with D = {1} and 24 implications with
D = {1, 1/2}. Note, that 2 paires of implications (→1 and →4 in the
proposed list below) are the same with D = {1} and D = {1, 1/2}.
D = {1}

→1 1 1/2 0

1 1 1/2 0
1/2 1 1 0
0 1 1 1

→2 1 1/2 0

1 1 1/2 0
1/2 1 1 1
0 1 1 1

→3 1 1/2 0

1 1 1/2 0
1/2 1 1 1/2

0 1 1 1

→4 1 1/2 0

1 1 0 0
1/2 1 1 0
0 1 1 1

→5 1 1/2 0

1 1 0 0
1/2 1 1 1
0 1 1 1

→6 1 1/2 0

1 1 0 0
1/2 1 1 1/2

0 1 1 1

D = {1, 1/2}

→7 1 1/2 0

1 1 1 0
1/2 1 1 0
0 1 1 1

→8 1 1/2 0

1 1 1 0
1/2 1/2 1 0
0 1 1 1

→9 1 1/2 0

1 1 1 0
1/2 1/2 1 0
0 1 1/2 1
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→10 1 1/2 0

1 1 1 0
1/2 1 1 0
0 1 1/2 1

→11 1 1/2 0

1 1 1/2 0
1/2 1/2 1 0
0 1 1 1

→12 1 1/2 0

1 1 1/2 0
1/2 1/2 1 0
0 1 1/2 1

→13 1 1/2 0

1 1 1/2 0
1/2 1 1 0
0 1 1/2 1

→14 1 1/2 0

1 1 0 0
1/2 1/2 1 0
0 1 1 1

→15 1 1/2 0

1 1 0 0
1/2 1 1 0
0 1 1/2 1

→16 1 1/2 0

1 1 0 0
1/2 1/2 1 0
0 1 1/2 1

→17 1 1/2 0

1 1 1 0
1/2 1 1/2 0
0 1 1 1

→18 1 1/2 0

1 1 1 0
1/2 1/2 1/2 0
0 1 1 1

→19 1 1/2 0

1 1 1 0
1/2 1 1/2 0
0 1 1/2 1

→20 1 1/2 0

1 1 1 0
1/2 1/2 1/2 0
0 1 1/2 1

→21 1 1/2 0

1 1 1/2 0
1/2 1 1/2 0
0 1 1 1

→22 1 1/2 0

1 1 1/2 0
1/2 1/2 1/2 0
0 1 1 1

→23 1 1/2 0

1 1 1/2 0
1/2 1 1/2 0
0 1 1/2 1

→24 1 1/2 0

1 1 1/2 0
1/2 1/2 1/2 0
0 1 1/2 1

→25 1 1/2 0

1 1 0 0
1/2 1 1/2 0
0 1 1 1

→26 1 1/2 0

1 1 0 0
1/2 1/2 1/2 0
0 1 1 1

→27 1 1/2 0

1 1 0 0
1/2 1 1/2 0
0 1 1/2 1

→28 1 1/2 0

1 1 0 0
1/2 1/2 1/2 0
0 1 1/2 1


