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abstract. The article offers a look at the combinatorial logic
as the logic of signs operating in the most general sense. For this
it is proposed slightly reformulate it in terms of introducing and
replacement of the definitions.
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1 Language selection
Let’s imagine for a moment what would be like the classical logic, if
we had not studied it in the language of negation, conjunction, dis-
junction and implication, but in the language of the Sheffer stroke.
I recall that it can be defined with help of negation and conjunction
as follows

A | B =Df ¬(A ∧B).

In turn, all connectives can be defined with help of the Sheffer
stroke in following manner

¬A =Df (A | A)
A ∧B =Df (A | B) | (A | B)
A ∨B =Df (A | A) | (B | B)
A ⊃ B =Df A | (B | B).

Modus ponens rule takes the following form

A, A | (B | B)

B
.
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We can go further and following the ideas of M. Schönfinkel to
define two-argument infix quantifier ‘|x’

A |x B =Df ∀x(A | B).

Now we can use it to define Sheffer stroke and quantifiers.

A | B =Df A |x B where the variable x is not free in the formulas
A and B;

∀xA =Df (A |y A) |x (A |y A) where the variable y is not free in
the formula A;

∃xA =Df (A |x A) |y (A |x A) where the variable y is not free in
the formula A.

The rule for the introduction of the universal quantifier takes the
form

⊢ A
⊢ (A |y A) |x (A |y A)

.

The language containing the only quantifier ‘|x’ is functionally
complete, and has the same expressive power as the language of the
classical predicate logic.

Imagine now that theorems of Principia Mathematica are formu-
lated and proved in this language, and that all the fundamental
theorems of logic, arithmetic and set theory are described in the
language.

We would have the same results as today, but it would be difficult
to convince other people that what we learn is really logic. In re-
sponse, we probably would have heard that we have created an
interesting mathematical tool, but it has little to do with logic.

2 Combinatory logic
Something similar has happened to the combinatory logic, which
was born December 7, 1920, when M. Schönfinkel has made his now
famous report to the Mathematical Society of Göttingen. In this
report Schönfinkel [4] has showed that not only logical connectives
but also quantifiers can be reduced to a single two-place operation.
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He also showed that under the assumption that functions themselves
can serve as arguments to other functions and to be their values,
we can get along one-argument functions, and two operations to
combine them, which can be summarized as follows

Kxy = x and Sxyz = xz(yz).

The role of K and S in the language is similar to that of the con-
nectives in the logic, but the fundamental difference is that they are
applicable to expressions that represent the objects of any nature (!)
rather than for solely sentences.

With these operations, which are called combinators, we can de-
fine any other operations with functions including quantifier ‘|x’. In
this sense, the set of K and S is complete. The theory of combina-
tors is called combinatory logic.

Alphabet

1. V ar — a set of variables;

2. K and S — constants;

3. ) , ( — brackets;

4. > — reduction character.

Terms

1. All x ∈ V ar are terms;

2. K and S are terms;

3. If X and Y are terms, then (XY ) is a term;

4. Nothing else is a term.

Reductions

1. If X and Y are terms, then X > Y is reduction;
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2. Nothing else is reduction.

Axioms

A.1 X > X

A.2 KXY > X

A.3 SXY Z > XZ(Y Z)

Rules

R.1 X > Y =⇒ XZ > Y Z

R.2 X > Y =⇒ ZX > ZY

R.3 X > Y, Y > Z =⇒ X > Z

We are not going to develop in detail the combinatory logic and
prove metatheorems related to it.

Unfortunately, due to the high degree of abstraction of the com-
binatory logic, it is not widespread, although many logicians have
heard of its existence. The combinatory logic is much more known
to specialists in computer science, which refer to it as a mathemat-
ical apparatus of functional programming. It is not considered as
a theory of correct reasoning. It seems unclear how to use it to
analyze usual reasoning. There were many attempts to synthesize
the combinatory logic with the logic in the traditional sense, but
as a result received either contradictory logical systems, or systems
that have not received wide acceptance and recognition.

3 The fundamental nature of the combinatory logic
The main obstacle to widespread use of the combinatory logic to
analyze the reasoning lies in the highly abstract nature of the basic
combinators, and hence the lack of understanding of how to make
their use in natural discourse. The situation is somewhat similar to
that if we developed a logic-based language with the single Sheffer
stroke.
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However, the combinatory logic is self-sufficient. There is no need
to go beyond it, to present it as the logic of constructing arguments.
It’s enough just to reformulate it a bit.

First of all it is necessary to give up some of the stereotypes. For a
long time it was a stereotype of logic as a theory about relationships
in the sphere of common terms. It was a characteristic of the Aristo-
telian approach, which has dominated for over two thousand years.
G. Frege has refused the stereotype and begun to examine the logic
as a theory of propositional functions. According to his words, the
logic is a theory of Truth Being.

This view turned out to be very fruitful, and we still are under
its influence. The theory of combinators does not fit neither Aris-
totlian, nor Fregean approach, since appeals to a more fundamental
entities than the common terms and propositions. It seems to me,
in this case we are dealing with the logic of signs operating in the
most general sense.

‘Combinatory logic is a branch of mathematical logic which con-
cerns itself with the ultimate foundations. Its purpose is the analysis
of certain notions of such basic character that they are ordinary
taken for granted ’ [3, p. 1].

The expressions of language, considered as signs, act as
representatives of the various objects of thought, which can be
things, properties, functions, relationships, etc. Assignment of
thought objects to the specific categories is possible, but it isn’t
a problem of logic, since it can happen only as a result of later cog-
nitive activity of the subject of cognition. The logic is a servant of
science, not trendsetter.

The power of language as an instrument of cognition is that it
allows us to manipulate objects of extralinguistic reality on the sign
level. This manipulation can be represented as a chain of transitions
from one signs to another. In the process of manipulating signs the
relationship between them and the objects of external reality should
not be lost. This is a necessary condition for the correctness of our
cognitive activity. Some transitions between signs can be justified by
the already known properties of the objects of thought correlated to
them. Other transitions are due to study the intrinsic properties of



230 Vladimir I. Shalack

sign systems. In a sufficiently general form the consequence relation
between signs can be defined as follows:

U follows from the premisses Σ = {V1, . . . , Vn} , if and only if
there exists a rule R, which allows on the basis of the values of
premises Σ to determine the value of the expression U .

Formulated in this way the idea of reasoning does not need to clar-
ify what specific linguistic expressions are used, what is the nature
of the correspondence between these expressions and extralinguistic
reality, what exactly is this reality.

4 What is the rule R?

In the classical logic, where the premises and conclusion are senten-
ces, this rule is specified as ‘if the premises V1, . . . , Vn are true, then
the conclusion U is true’. Obviously, in this case, the rule R is a
partial function that is defined only when all the premises are true.
If at least one of the premises is false, we can not say with certainty
what will be the truth value of the conclusion. In this case the
problem is complicated by the fact that for sufficiently rich theory it
is fundamentally impossible to prove that the theory is consistent,
and to prove that there is at least one model that makes all the
premises true. The standard definition of the semantic consequence
stops working.

Our definition does not require that all the premises were true.
We can build a system of reasoning in which the sentence not-A
follows from the sentence A. Indeed, if we know the truth-value of
the proposition A, then there is no problem to find the truth-value of
proposition not-A. When you’re trying to explain it to professional
logician, you will often come across a misunderstanding and opposi-
tion, the reason of which are stereotypes inherited from the classical
logic approach.

Our definition does not demand that assumptions and conclusions
necessarily have been sentences. If you take the language of arithme-
tic, the formula t1 = t2 follows from two terms t1 and t2, because,
knowing the values of arithmetic terms t1 and t2, we can always
determine the truth value of the formula t1 = t2. Similarly, the
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term t2 follows from the terms t1 and t1 + t2. In the last example
we have the consequence relation between the terms, not sentences.

Inference rules of any system of logic, that we use during con-
struction of the syntactic metalanguage proofs, are also examples of
rule R from our definitions of consequence.

The rule R can be a computer program, that from the input
parameters (premisses) calculates the result (conclusion), which can
be a solution of the differential equation, a corrected word from a
text, an informative chart, a piece of music, characters that appear
on the screen depending on what keys are pressed, etc.

A student of Architectural Institute in defending diploma must
convince the commission of examiners that if you bring sand, water,
cement and bricks, and then follow the course of action to certain
rules and drawings of the project, the result will really skyscraper,
and not another wreck.

A person who is engaged in guesswork, also follows the rules
associated with some sign system. Astrologers, African shamans,
fortune-tellers on the cards use their sign systems and their own
rules relating assumptions and conclusions.

In natural language sentence ‘Mary loves Bob’ follows from the
words ‘Bob’, ‘Mary ’, ‘love’. This following takes place quite inde-
pendently of whether or not Mary loves Bob. It takes place because
of our knowledge of the rules of morphology, grammar and semantics
of English. Even if we are for the first time in our lives hear or read
this sentence, but if the values of the words ‘Bob’, ‘Mary ’ and ‘love’
are known to us, thanks to our knowledge of the rules of language,
we always can define the value of the sentence ‘Mary loves Bob’.

5 Formalism of signs
As can be seen from the above examples our definition covers a
fairly wide range of phenomena. It is not limited to sentences, but
is applicable to the signs of a different nature. In order to cover it
in one logical formalism, we must find a starting point to represent
the signs.

To do this, I recall the words of a well-known linguist Emile Ben-
veniste that ‘. . . language has a configuration in all its parts and as
a totality. It is in addition organised as an arrangement of distinct
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and distinguishing ‘signs’, capable themselves of being broken down
into inferior units or of being grouped into complex units. This
great structure, which includes substructures of several levels, gives
its form to content of thought. . . Linguistic form is not only the con-
dition for transmissibility, but first of all the condition for the re-
alization of thought. We do not grasp thought unless it has already
been adapted to the framework of language’ [1, pp. 55–56].

The basic idea is that from the syntactic point of view signs form
a hierarchy. Complex symbols are obtained by combining simpler
ones. To do this, we can use a number of different brackets.

For example, a pair of brackets ⟨ , , ⟩a may be three-argument
operation, which allows us to construct complex sign ⟨‘apple’, ‘is’,
‘red’⟩a from three words ‘apple’, ‘is’ and ‘red’. From signs ‘sky’,
‘is’ and ‘blue’ we can construct a new sign ⟨ ‘sky’, ‘is’, ‘blue’ ⟩a.
Other types of brackets will be needed to build such signs as ⟨‘+’,
‘3’, ‘2’ ⟩b and ⟨ ‘young’, ‘man’ ⟩c.

It is easy to show that in fact we need only one pair of brackets,
which is applicable only to pairs of signs. That’s how we do that,
because it is convenient for the demonstration of connection with
the combinatory logic, but application tasks may require different
sets of brackets [5].

Alphabet

1. V ar — a set of variables.

2. Const — possibly empty set of constants;

3. ), ( — brackets.

Terms

1. 1. All x ∈ V ar are terms;

2. All c ∈ Const are terms;

3. If U and V are terms, then (UV ) is term;

4. Nothing else is a term.
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For dropping brackets we accept an agreement about their asso-
ciation to the left.

From the algebraic point of view the models of this language are
groupoids, which can be represented as follows

M = ⟨D,O, I⟩

where D is nonempty set
O : D ×D → D — two-argument operation on D
I — a function for the interpretation of language constants.

Let V al = DV ar — the set of all functions assigning values to
variables. Then the value of the term U in the model M = ⟨D,O, I⟩
for the evaluation v ∈ V al is defined in the obvious way:

1. | x |v= v(x), if x ∈ V ar;

2. | c |v= I(c), if c ∈ Const;

3. | (UV ) |v= O(| U |v, | V |v).

Now we are ready to define rigorously the central concept of con-
sequence Σ ∥= U , where Σ is a finite set of terms, and U is a term.

Term U follows from the set of terms Σ = {V1, . . . , Vn} if and
only if for any model M there exists a function f , such that for
every valuation v ∈ V al holds | U |v= f(| V1 |v, . . . , | Vn |v).

{V1, . . . , Vn} ∥= U ⇐⇒ ∀M∃f∀v(| U |v= f(| V1 |v, . . . , | Vn |v)).

It is easy to verify that this consequence relation satisfies the
well-known conditions of Tarski:

1. If U ∈ Σ, then Σ ∥= U ;

2. If Σ ∥= U and Σ ⊆ ∆, then Σ ∥= U ;

3. If Σ ∥= V and Σ, V ∥= U , then Σ ∥= U .



234 Vladimir I. Shalack

In addition, the defined relation is structural, i.e. e(Σ) ∥= e(U)
follows from Σ ∥= U , where e — is a substitution on set of terms
of the language. It means that the consequence relation defines the
logic in the sense of Tarski.

Let’s turn to the typology of signs of Peirce–Morris. There are
three groups of signs.

The first group — signs-indices, whose connection with the sig-
nified objects may be due to temporal, spatial and causal types
of relationships. Analysis of specific types of relationships is be-
yond the scope of logic. Distinguishing feature of signs-indices is
that they have no significant similarity with their objects, that they
refer to individual things, to individual objects, to single sets of ob-
jects and direct our attention to their objects by blind compulsion.
We can assume that in our formalism signs-indices are among initial
constants of language.

The second group of signs — iconic signs. They are linked to
the signified objects through the structural similarity. Charles S.
Peirce believed that any algebraic equation is an iconic sign because
it shows using algebraic symbols (which themselves are not iconic
signs) the relationships between it’s variables. Every formula of logic
and every term can also be regarded as iconic signs. It is thanks
to knowledge of their structure we have the ability to operate with
them on the basis of formal rules. The situational logics explicitly
use iconicity property of complex expressions of the language.

The third group of signs are signs-symbols, whose connection
with the signified objects is quite arbitrary, it exists only for the lan-
guage interpreter. By his request, he gives the role of some objects
to be representatives of other objects. In logic the operation of in-
troducing of signs-symbols is well-known and is called the operation
of definition. In our language we can represent it as follows.

Suppose that we have in our language a term T , all the variables
of which are contained among set of variables {x1, . . . , xn}. Then
we can add to our language a new constant D, taking the following
definition

Dx1 . . . xn =def T.
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By adopting a definition the interpreter is able at any moment to
take advantage of the inverse operation of substitution, or disclosure
definition, and make the transition from the term X {DZ1 . . . Zn},
in which there is occurrence of the term DZ1 . . . Zn, to the term
X {T [Z1/x1, . . . , Zn/xn]}, obtained as a result of replacement
DZ1 . . . Zn with simultaneous substitution of terms Z1, . . . , Zn in
the term T instead of the variables x1, . . . , xn. We can summarize
this as the next rule

Dx1 . . . xn =def T, X {DZ1 . . . Zn}
X {T [Z1/x1, . . . , Zn/xn]}

.

The reasoning in this logic can be defined as a sequence of terms
T1, . . . , Tn, each of which is either one of the premises, or obtained
from the previous terms of the sequence by the rule of disclosure of
definitions. We specially focus attention on the fact that the possible
values of terms occurring in the derivation can be any objects, and
not necessarily the truth values of sentences.

Basically, nothing new compared to existing combinatory logic
has been proposed. In the combinatory logic we accept reductions
KXY > X and SXY Z > XZ(Y Z) as initial, and in our pro-
posed formalism we can introduce definitions KXY =def X and
SXY Z =def XZ(Y Z) and get all the same. In this sense, the com-
binatory logic is embedded in the formalism we have constructed.

6 Comments
I. Prior to emergence of the science of logic, much attention was
paid to the special operation on linguistic expressions, which later
became known as the ‘operation of definition’. The idea of this
operation is transparent to the understanding and hardly anyone
would reject it. You may recall that science begins not so much
with theorem proving, as with search for definitions of the various
objects and phenomena of reality. Plato’s Socrates seeks definitions
of beautiful jug, a beautiful woman, beauty by itself, courage, and
many others. Thus he extended the language for the description
of the world, which allowed him a new way to classify phenomena,
to move to a higher level of abstraction and then to think in a
new system of concepts. Modern science is unthinkable without an
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abstract and ideal objects, introduced by different kinds of defini-
tions. Any system of axioms implicitly defines the terms imposed by
it. The combinatory logic can be rigorously represented as a system
of reasoning based on accepted definitions. In this case, its meaning
is extremely clear. It is interesting that the initial set of constants
Const may be empty, but it can not prevent a logical subject to start
using the operation of definition and thus start forming a system of
concepts, which are essentially a priori.

II. Initial Schönfinkel’s combinators K and S are of interest be-
cause they represent the complete set of combinators, through which
you can define any other combinators. But in the logic of reasoning
based on the principle of introducing definitions and their replace-
ment there is no need to declare some initial basic combinators.
Through definitions, depending on a specific problem to be solved,
you can introduce any desired combinators, not reduce them to a
mandatory basis. This significantly simplifies many of constructions
and reasoning, making them closer to the natural.

III. It is known that in the combinatorial logic it is provable
theorem that each combinator C has a fixed point, i.e. there exists
such a term T that CT = T is provable. Similarly, we can show
that fixed-point definitions are allowed in the proposed formalism.
That is, if there exists a term T , all the variables of which are
contained in set of variables {y, x1, . . . , xn}, then we can introduce
the fixed-point definition

Dx1 . . . xn =dfp T [D/y] .

These definitions give rise to a conservative extensions of the ex-
isting formalism, which at the same time are not inessential. This
means that the system of logic, based on the principle of intro-
ducing definitions and their replacement which is supplemented by
the fixed point definitions, has a greater expressive power than the
combinatory logic, since combinatory logic can be embedded into it,
but reverse isn’t true. It is appropriate to draw an analogy between
the constants, introduced by means of fixed point definitions, and
ε-terms in the classical logic.
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IV. It is known that all recursive functions can be represented
in combinatory logic. They are also obviously representable in the
proposed formalism. But the heart of this formalism is the logical
operation of definition. Hence it follows that nature of computable
functions is exclusively logical and does not depend on adoption
any assumptions about the world around us. Since the proposed
formalism has clear semiotic foundations and at the same time is
closely connected with computability, it can be regarded as the per-
fect language, which G. Chaitin dreamed of [2].
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