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1 Introduction
Some classes of modal logic such as CTL (computational tree logic)
and LTL (linear temporal logic) are now rather widely used in com-
puter science for the task of verifying finite automata [2]. To be veri-
fied, an automaton must be rewritten in terms of the corresponding
logic, and then some of proof-constructing techniques, automatic
or interactive, are applied to find whether the automaton performs
actions it is supposed to perform (and no other). If the formaliza-
tion is sound this procedure must reveal all the possible errors that
can appear in the automaton. The techniques of formalization and
analysis of finite automata and automaton programs via temporal
logic are widely known as model checking approach. But the sense
of temporal logics isn’t restricted by only automata or program sys-
tems: they can describe any lasting-in-time process, every moment
of which can be described by the classical logic. Though some of
these processes are very hard to be described (e.g. due to possibility
of infinite branching), others have very simple structure, so tempo-
ral logics can be implemented to them even easier than to program
systems. In particular, it is possible to expand field of applications
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of the classes of logic to parametrized electromechanical technical
systems. The linear temporal logic was successfully used to perform
an analysis of new reagent-dozing mechanism [11]. Despite the fact
that results of the analysis were confirmed by an experiment, some
problems were discovered in this approach. The hardest one was to
find proper proof-constructing instruments.

The matter is that electromechanical systems like the reagent-
dozing mechanism are parametrized and their features to be checked
essentially depend on these parameters. So in the most general case
induction scheme must be included to make the analysis possible
(and it was used to perform the analysis in [11]). Moreover, even
one-counter automata representation in modal logics can lead to
undecidability [3]. But in every specific case we need only very
restricted version of the induction. So neither model checking in-
struments nor interactive provers fit the task perfectly: the former
are too weak in some aspects (no induction) and too complex in oth-
ers (allowing very complicated automaton structures); the latter are
too strong and therefore demand human decisions. Our suggestion
was to try a universal technique of program transformation on this
problem, and the first results of this approach have been received.

The technique is called supercompilation and was developed
since seventies of the last century (starting with the works of
V.F. Turchin) [15]. Its essence is unfolding a computational tree
of a partly specialized program together with folding it back to
a program graph. The term ‘partly specialized’ means that some
input parameters of a program can be known (and some can re-
main unknown). The process of unfolding resembles the one that is
performed in model checking on automata. In general, supercom-
pilers have no domain-specific transformations to optimize complex
finite structures so they cannot compete with corresponding model-
checkers but the technique of supercompilation was successfully ap-
plied to verify simple parametrized protocols [9, 1] and in some of
these applications showed itself even more powerful than the corre-
sponding domain-specific programs. Despite the supercompilation
wasn’t presented as a proof-transforming technique, it has very deep
interconnections with logic, and its applications to the temporal log-
ics CTL and LTL lead to some appealing effects.
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Therefore we try to construct a ‘double permutation’ of applying
modal logic to technical systems and computer science to modal
logic. The results show that all these domains have very much in
common, but still a lot of work remain on this way.

2 Infinite state technical system in LTL
2.1 General features
Suppose that a standard circuitry is enriched by some parametrized
elements, such as switching boards, and the system is not only to
satisfy some qualitative features but has some quantitative ones.
Then it may happen that in states of the system never repeat them-
selves in time. For example, if we have a reagent-dozing system that
spreads a reagent of a volume Vr after a volume K ∗ Vw of water
passes through a pipe, then in most moments of time the concentra-
tion of the reagent in the water reservoir is unique (it is expressed as
a formula Vr

Vw
∗ T

T∗K+R , where T is the total number of full cycles of
the mechanism work and R is the number of water volumes Vw that
passed through the pipe after the last reagent spread (R < K)). In
such cases it is reasonable to examine only changes of system quan-
titative features but not the features themselves. Because of the
discrete nature of the parametrized elements that are included in
the scheme, these quantitative requirements can be approximated
by rational numbers. Because of finiteness of the scheme the satisfi-
able requirements of state change must belong to some finite (though
maybe very large) set. Since parameters of the parametrized ele-
ments can also change, the set of the requirements, though remains
finite, becomes even larger.

So the following features of the system are guaranteed:

1. Non-constant finite number of elements;

2. Finite set of different states (without considering quantitative
aspects);

3. Finite set of changes of quantitative characteristics of the sys-
tem on a fixed state.

And the following features are to be checked:
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1. Uniqueness of successor state. When human intrusion is for-
bidden, it is essential to know that the system works without
any unpredictable indeterminacy.

2. Existence of successor state. If some reachable state never
changes, the system will halt.

3. Repeatability of all significant actions.

4. Return to initial state.

These features make us sure that the system infinitely repeats the
loop between two initial states.

The whole description of the system somehow resembles the one
of the modular arithmetic. The similarity becomes even greater in
practice because of the round construction of switching boards that
allows a stepping mechanism to move only forward (and the last
switch is followed by the first).

In the logical model of the system we describe two classes of ax-
ioms: axioms of stability (forbidding actions to be done without a
trigger) and axioms of change (describing possible one-step changes
of conditions). For every action possible in the system at least two
axioms appear, and one more axiom must be included to describe
initial conditions. If the system of axioms is full, the feature of
linearity (the uniqueness of successors) can be checked by checking
the fact that antecedents in every two axioms of change are dis-
joint. To prove the features of existence and repeatability it might
be useful to find additional invariants of the system. After that
the last feature can be checked constructively by building a single
iteration starting and ending by the initial state. In every specific
case, when all parameters of the scheme are known, it can be done
in straightforward way.

2.2 LTL formalization

We will use the full language of LTL with the modalities X, G, F,
U. Though in the first formalization the modality U was used in
the model axiomatization, now we try to avoid it to make the model
better from the point of view of computer science.
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As an example of technical system let us consider a simple dozing
mechanism which consists of the single stepping switch, the single
pump and the single flow indicator. Every time the flow indicator
turns the stepping switch does one step. One of the contacts of the
switching network (which can be chosen arbitrarily while mounting
the scheme) is connected with the pump. When the stepping switch
reaches the contact (let us call it K) the pump does one move and
closes the chain that returns the stepping switch to the first posi-
tion. This sequence of actions repeats itself potentially forever. It
is less complex than the scheme in [11]: now we have only one step-
ping switch instead of the two — but the analogue of our simplified
scheme is also used in practice [16]. So in fact we need to verify some
special kind of one-counter (not necessarily determined) automaton
in LTL — the problem that is known to be PSPACE-hard in general
and that becomes undecidable after adding one more counter [3].

The scheme is parametrized with the two parameters: the di-
mension of switching network N and the number of the contact K
that activates the pump. So we need to use not only single proposi-
tional variables but also the array of switch states on the switching
network, and not only single axioms but also axiom schemes cor-
responding to different states of stepping switch. More natural ap-
proach is to consider not only boolean variables but also a variable
of the type ZN , and this approach is valid due to the two features
of stepping switch construction:

1. The stepping switch is always connected to one contact on the
switching network;

2. This contact is unique.

The normal work of the mechanism assumes these two features. But
if we want to study disruptions then we must use the model with
array of booleans since we assume short circuits to happen on the
switching network. We now consider most generic case, and turn to
the usage of arithmetic in the program model.

The model variables are the following.

1. R is the state of the indicator switch;
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2. C is the state of the switch returning the stepping switch to
the initial state;

3. P is the state of pump switch;

4. T is the state of additional switch controlling the pump;

5. Wi is the state of the stepping switch (N is the total number
of contacts, so i ≤ N).

The model axioms are separated in two sets. The first is called
axioms of change and describes how a current state can affect its
successor. Construction of these axioms can be done straightly from
the description of the mechanism work.

1. R ∧Wi ⇒ X(¬R ∧ ¬Wi ∧Wi+1) (the axiom scheme for all i,
i ≥ 1 ∧ i < N).

2. R ∧WN ⇒ X(¬R ∧ ¬WN ∧W1)

3. ¬R∧T∧¬WK ⇒ XR. This axiom, when implemented, means
that the volume of water Vw have passed through the pipe.

4. P ⇒ X(¬P ∧ ¬T )

5. ¬P ∧WK ∧T ⇒ XP . This axiom, when implemented, means
that the volume of reagent Vr have been spread into the pipe.

6. ¬T ∧W1 ∧ C ⇒ X(¬C)

7. ¬C ∧Wi ⇒ X(C ∧ ¬Wi ∧Wi+1) (the axiom scheme for all i,
i ≥ 1 ∧ i < N)

8. ¬C ∧WN ∧ ¬T ⇒ X(C ∧ T ∧ ¬WN ∧W1)

The second set of axioms is called axioms of stability and forbids
switches to change their conditions arbitrarily. In general it is not
obvious how to construct these axioms because they are hidden in-
side a scheme and not presented explicitly in its description. This
fact may lead to mistakes in a scheme (for example, in the mech-
anism tested in [11] some uncertainty appeared exactly because of
the absence of the axiom that forbids the indicator switch to change
state during the work of pump).
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1. Wi ⇒ (C ∧ ¬R ⇒ XWi) (the axiom scheme for all i, i ≥
1 ∧ i ≤ N)

2. ¬Wi ⇒ (¬Wi−1 ∨C ∧ ¬R⇒ X(¬Wi)) (the axiom scheme for
all i, i > 1 ∧ i < N)

3. ¬W1 ⇒ (¬WN ∨ C ∧ ¬R⇒ X(¬W1))

4. T ⇒ (¬P ⇒ XT )

5. ¬T ⇒ (C ∨ ¬WN ⇒ X(¬T ))

6. ¬P ⇒ (¬T ∨ ¬WK ⇒ X(¬P ))

7. ¬R⇒ (¬T ∨WK ⇒ X(¬R))

8. C ⇒ (T ∨W1 ⇒ XC)

All these axioms describe the dependence of variables’ values in
a successor state on their values in the current one. And the last
axiom remains to be introduced — the axiom of initial state: W1 ∧
¬R ∧ ¬P ∧ T ∧ C ∧ ∀i(i > 1 ⇒ ¬Wi).

Now we must formalize the conditions to be checked.

1. Uniqueness of successor state. Only one axiom of change can
be implemented at every moment of time.

2. Existence of successor state. At least one of the axioms of
change can be implemented at every moment.

3. Repeatability of all significant actions.

∀i(R ∧Wi ⇒ XF(R ∧Wi)

...

∀i(¬C ∧Wi ⇒ XF(¬C ∧Wi)

4. Return to initial state.

W1 ∧¬R∧¬P ∧ T ∧C ∧ ∀i(i > 1 ⇒ ¬Wi) ⇒ XF(W1 ∧¬R∧
¬P ∧ T ∧ C ∧ ∀i(i > 1 ⇒ ¬Wi)).
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The only task is now to present a fast and efficient method of dis-
covering the features of the formalized system. In [11] it was done by
hand though there are some techniques in program transformation
that can be (and have been) successfully implemented to perform
this work. One of these techniques is the supercompilation which
is typically used in optimization and analysis of functional and im-
perative programs [4, 7], but last years it was also implemented to
verification tasks [9, 1]. It was noticed that this technique works
well on simple parametrized systems of various natures [8].

3 Proving in LTL via supercompilation
The definition of supercompilation can be found in [14]. Saying
informally, it consists of the following techniques:

1. Unfolding a computational tree.

2. Folding some branches of the computational tree by means of
generalization.

3. Extracting a residual program from the folded graph.

The first technique unfolds computational tree of a program, by
step-by-step driving: implementing its rules on computational states
until any functional calls disappear. It is exactly the same technique
that is used in model checking while unfolding infinite graph of
states of an automaton. This resemblance implied the idea that
supercompilation may be used for modal logics.

The second technique belongs to the supercompilation itself and
is the heart of the method. Some computational branches can be
infinite so it is necessary to stop driving them without reaching a
final state. For this need the following technique is developed: if
some computational branch is considered to be ‘dangerous’ then
driving on it halts. The notion of being ‘dangerous’ can vary in
different supercompilers (e.g. it may mean ‘to be too long’ or ‘to
repeat itself’). After discovery of a dangerous state a supercompiler
folds the computational branch into a loop using generalization.
Generalization unifies a latter computational state of the branch
with some former state on it that most resembles the latter state (the
notion of ‘resemblance’ can also vary in different supercompilers).
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After all computational branches of a program are computed into
final states or folded, a residual program is constructed from this
folded graph. This step isn’t discussed in this paper because it is
very dependent from a programming language of a target program.

Let us illustrate the process of supercompilation on a simple ex-
ample from Peano arithmetic.

Example 1.
There is a recursive definition of addition.
a(Z,y)=y;

a(S(x),y)=S(a(x,y));

Let us supercompile the call a(x, a(S(S(Z)),y)).

a(x,a(S(S(Z)),y))
x=S(x′)

**UUU
UUUU

UUUU
UUUU

U
x=Z

uullll
llll

llll
ll

a(S(S(Z)),y)

��

S(a(x’,a(S(S(Z)),y)))

��

S(a(S(Z),y))

��

a(x’,a(S(S(Z)),y))

J
J
J
J
J
J
J
J
J
J
J
J

S(S(a(Z,y)))

��

S(S(y))

Every step is an application of a definition or case analysis. The
supercompilation lasts until there are no functional calls in a node
or the node repeats its predecessor modulo renaming.

Thus, the residual recursive definition corresponding to the call
a(x, a(S(S(Z)),y)) looks as
f(Z,y)=S(S(y));

f(S(x),y)=S(f(x,y)).

The second addition is already evaluated by the supercompiler so
it disappears in the residual program.

In the terms of logic, supercompilation technique rewrites an ini-
tial proof for some special case of a theorem (in the example the
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theorem was an existence of the sum of every two naturals) and
then does some obvious logical transformations to receive the proof
that isn’t more complex than the initial one (it is desirable to make
it less complex) but is equivalent to it by means of the set of realiza-
tions. There are some restrictions of input proofs: positive super-
compilation allows no ¬ in disjunctions; perfect supercompilation
allows introducing constraints, so it permits ¬ in case analysis.

The set of the allowed logical transformations of a proof is very
limited and depends on supercompilation technique. For example,
the rule A ∧ A ⇔ A is equivalent to so-called msg (most specific
generalization) sharing mechanism and is used in positive super-
compilers [13]; the rule A ∨ A ⇔ A is used in the supercompiler
SCP4 [10]. The last uses even more ‘unsafe’ transformations such
as ¬¬A⇒ A that allow to highly optimize very complex programs
but in some cases changes their semantics (e.g. transform infinite
proofs to finite ones).

Example 2. Consider a recursive function on natural numbers:
g(Z)=Z;

g(S(x))=g(h(x,Z));

h(Z,y)=y;

h(S(x),y)=h(x,2y);

g(x) is non-terminating for x > 1 but in an unsafe supercompiler
the observation that all the computations cannot end by the term
other than Z (so ∀x(¬¬(g(x) = Z))) may lead to semantics-changing
optimization replacing the definition of g by a constant zero.

The supercompilation technique doesn’t fit well for every task on
automatic analysis and has some subtle points such as semantic-
changing transformations. But it was successfully used for verifica-
tion of cash-coherent protocols [9] and communication protocols [1]
in cryptography. We decided to try it also on verifying the model
of a simple dozer that is described in the previous section.

As input language we chose Refal which is close by semantics to
Markov algorithms on strings. It was done because Refal is the in-
put language of the general-purpose supercompiler SCP4 [10]. The
convenience of this supercompiler is that it presents perfect informa-
tion propagation in conditions (allows ¬) so it is possible to use not
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only boolean variables (for which perfect information propagation
coincides with positive), but also naturals. SCP4 is not semantics-
preserving in case of non-terminating target programs, but if the
target program always terminates, this supercompiler preserves its
semantics, so the problem is insignificant.

Representation of the model variables repeats the one in the pre-
vious section, but we chose unary natural number to represent the
state of stepping switch. Representation of the model axioms in
programming language was straightforward: we divided data visi-
ble by the program on two parts, a current state and a next state.
The initial state is completely determined. All the axioms describe
the influence of the former to the latter. If after implementing all
the axioms some uncertainty remains in the next state, then this
uncertainty is represented as free variables which can be replaced
by any value. The axioms of change that correspond to changing
the state of system (counting water flow or pumping the reagent)
increase corresponding variables: one of them, e.R, is the number of
volumes Vw that passed through a pipe; another, e.P, is the num-
ber of volumes Vr that were added to the water flow. The aim is to
prove that with any values of free variables the program returns to
the initial state and computes the certain pair, e.R, e.P, and then
to compare e.P

e.R
to the technical requirements (it must be equal to

1
K−1). The supercompilation does this task for any constant N and
K. If K ̸= 1 and K ≤ N , then the target program is optimized to
’FF’ (that means that ¬(e.R ̸= K − 1) ∧ ¬(e.P ̸= 1)). If K > N ,
then no optimization is performed, so the program has indetermi-
nacy and represents the erroneous work of the mechanism. This
situation simply means that there is no contact on the switching
network that is connected with the pump. The most interesting
fact is that for K = 1 program isn’t optimized to constants, so in-
determinacy appears and the system becomes inconsistent. This is
an analogue of the error that was found in [11] (and, as was shown
experimentally, really can occur in the system). By changing one
or another class of axioms we can also see how the system behaves
when some physical disruption happens.

But to check all practical cases by SCP4, it is necessary to write
simple auxiliary program that lists all of them in the input SCP4
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file. This inconvenience appears because modern supercompilers are
very careful in transforming programs (or proofs) not to change their
semantics (or admit very slight changes) and permit only very few
logical transformations. It is supposed that strengthened techniques
like distillation [5] can do more complicated transformations like
merging several induction proofs in a one so can be able to avoid
these restrictions.

4 Conclusion

Our consideration of mechanical models together with logic and
computer science led to revealing a deep connection between all
these domains. First, mechanical models are easily described via
temporal logic with counters, through introducing two classes of
axioms that permit and forbid to change condition of an element.
Second, the axioms of temporal logic with counters can be easily
rewritten as functions in a programming language strong enough to
express negation. Due to the features of quantitative restrictions
that can appear in such systems it is possible to represent the con-
ditions of consistency of the scheme as well. And third, it is possible
to implement non-domain-specific program transformers to do the
automatic analysis of the model. The essence of the last fact is that
we must only formulate model axioms and the conditions of cor-
rectness and incorrectness of the scheme, and then it is possible to
use not proof-constructing, but only proof-transforming technique
to verify every special case of the scheme.

This may be the small step to observing the pure theoretical re-
sults of reverse mathematics in practice. It is known that folding
computational trees only along their branches in supercompilation
leads only to linear speedups of residual program [6] (so only I∆0-
formulas may be eliminated). But embeddings of tree embeddings
lead to some non-linear program speedups very close to ones per-
formed by induction [6]. The fact is not surprising from the point
of view of logic, but remains very subtle and obscure from the point
of view of practical program transformations. Establishing under-
standing between these two points of view seems to be very fruitful,
yet unexplored, domain.
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Appendix. Refal representation of the model

$ENTRY GO {s.1 s.2 s.3 s.4 (e.1) = <Launch (s.1 s.2 s.3

s.4)(e.1) (<I ’III’>) (<I ’II’>) (()()(’I’)’F’ ’F’ ’T’

’T’)>;}

Launch *checking the consistency condition and applying all
axioms

{(s.1 s.2 s.3 s.4)(e.1)(’I’ e.N)(’I’e.K)

((’I’e.KK)(’I’e.X)(’I’) ’F’ ’F’ ’T’ ’T’) = <Neq

(e.K)’I’e.KK> <Neq (’I’e.X)’I’>;

(s.1 s.2 s.3 s.4)(e.1)(e.N)(e.K)((e.R)(e.P)(e.W) s.R

s.P s.C s.T)=<Launch (s.1 s.2 s.3 s.4)(e.1) <Next <AxiMW

<AxiMP <AxiMR <AxiMC <AxiSC <AxiMT <AxiWStab <AxiTStab

<AxiPStab <AxiRStab <AxiCStab (e.N)(e.K)((e.R)(e.P)(e.W)

s.R s.P s.C s.T) (e.R)(e.P)(e.1) s.1 s.2 s.3

s.4>>>>>>>>>>>>>;
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}

Next *transition to the next moment of time

{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT =(e.N)(e.K)

((e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT);

}

AxiMW *axiom of moving the stepping switch after rotating
the flow indicator

{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C

s.T)(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.R:’T’,

<IncR (e.W)e.N>:e.WW = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R

s.P s.C s.T) (’I’e.XR)(e.XP)(e.WW) ’F’ s.XP s.XC s.XT;

e.1 = e.1;}

AxiMT *axiom of the pump doing back move

{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C

s.T)(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT,

s.P:’T’= (e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(’I’e.XP)(e.XW) s.XR ’F’ s.XC ’F’;

e.1 = e.1;}

AxiMP *axiom of the pump doing work move

{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C

s.T)(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.P:’F’,

s.T:’T’, <Neq (e.W)e.K>:’F’= (e.N)(e.K)((e.R)(e.P)(e.W)

s.R s.P s.C s.T)(e.XR)(e.XP)(e.XW) s.XR ’T’ s.XC s.XT;

e.1 = e.1;}

AxiMR *axiom of making the flow indicator move

{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C

s.T)(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.R:’F’,

s.T:’T’, <Neq (e.W)e.K>:’T’= (e.N)(e.K)((e.R)(e.P)(e.W)

s.R s.P s.C s.T) (e.XR)(e.XP (e.XW) ’T’ s.XP s.XC s.XT;
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e.1 = e.1;}

AxiMC *axiom of unlocking the switch C
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C

s.T)(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.C:’T’,

s.T:’F’, <Neq (e.W)’I’>:’T’= (e.N)(e.K)((e.R)(e.P)(e.W)

s.R s.P s.C s.T) (e.XR)(e.XP)(e.XW) s.XR s.XP ’F’ s.XT;

e.1 = e.1;}

AxiSC *axiom of moving the stepping switch due to C
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.C:’F’, <Neq

(e.W)e.N>:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W)s.R s.P s.C

s.T) (e.XR)(e.XP)(’I’) s.XR s.XP ’T’ ’T’;

(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.C:’F’, <IncR

(e.W)e.N>:e.WW = (e.N)(e.K) ((e.R)(e.P)(e.W)s.R s.P s.C

s.T) (e.XR)(e.XP)(e.WW) s.XR s.XP ’T’ s.XT;

e.1 = e.1;}

AxiWStab *axiom of stability of the stepping switch
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.C:’T’,

s.R:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.W) s.XR s.XP s.XC s.XT;

e.1 = e.1;}

AxiTStab *axiom of stability of the auxiliary switch T
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.T:’T’,

s.P:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC ’T’;

(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.T:’F’,

s.C:’T’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC ’F’;
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(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.T:’F’, <Neq

(e.W)e.N>:’T’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C

s.T) (e.XR)(e.XP)(e.XW) s.XR s.XP s.XC ’F’;

e.1 = e.1;}

AxiPStab *axiom of stability of the pump switch
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.P:’F’, <Neq

(e.W)e.K>:’T’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C

s.T) (e.XR)(e.XP)(e.XW) s.XR s.P s.XC s.XT;

(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.P:’F’,

s.T:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.P s.XC s.XT;

e.1 = e.1;}

AxiRStab *axiom of stability of the indicator switch
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.R:’F’,

s.T:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.R s.XP s.XC s.XT;

(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.R:’F’, <Neq

(e.W)e.K>:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C

s.T) (e.XR)(e.XP)(e.XW) s.R s.XP s.XC s.XT;

e.1 = e.1;}

AxiCStab *axiom of stability of the switch C
{(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.C:’T’, <Neq

(e.W)’I’>:’F’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C

s.T) (e.XR)(e.XP)(e.XW) s.XR s.XP s.C s.XT;

(e.N)(e.K)((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.XC s.XT, s.C:’T’,

s.T:’T’ = (e.N)(e.K) ((e.R)(e.P)(e.W) s.R s.P s.C s.T)

(e.XR)(e.XP)(e.XW) s.XR s.XP s.C s.XT;
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e.1 = e.1;}

I *formatting a string to unary natural number
{=;

s.1 e.1 = ’I’<I e.1>;}

Neq *checking unequality of two natural numbers
{() = ’F’;

(s.1 e.0)s.1 e.1 = <Neq (e.0)e.1>;

(e.1)e.2 = ’T’;}

IncR *increasing a natural number e.0 modulo e.1, plus 1
{(e.0) e.1, <Neq (e.0)e.1>:’T’ = ’I’e.0;

(e.0) e.1 = ’I’;}


