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abstract. Quasi-matrix logic is based on the generalization of
the principles of classical logic: bivalency (a proposition take val-
ues from the domain {t (truth), f (falsity)}); consistency (a propo-
sition can not take on both values); excluded middle (a proposi-
tion necessarily takes some of these values); identity (in a com-
plex proposition, a system of propositions, an argument the same
proposition takes the same value from domain {t, f}); matrix prin-
ciple — logical connectives are defined by matrices. As a result
of our generalization, we obtain quasi-matrix logic principles: the
principle of four-valency (a proposition takes values from domain
{tn, tc, fc, f i}) or three-valency (a proposition takes values from
domain {n, c, i}); consistency : a proposition can not take more
than one value from {tn, tc, fc, f i} or from {n, c, i}; the principle
of excluded fifth or fourth; identity (in a complex proposition, a
system of propositions, an argument the same proposition takes
the same value from domain {tn, tc, fc, f i} or domain {n, c, i});
the quasi-matrix principle (logical terms are interpreted as quasi-
functions). Quasi-matrix logic is a logic of factual modalities.

Keywords: quasi-matrix logic, semantic completeness, decision
problem, Kalmar’s method

1 Kalmar’s method
Well-known proof method for methateorem of semantic complete-
ness of classical propositional calculus, which may be also treated
as an approach to the solution of the decision problem, implies the
proof of the following lemma:

1This work is supported by Russian Foundation of Fundamental Research
grant № 11-06-00296-a.
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Lemma 1. Assuming thatD is a formula, a1, . . . , an are all different
variables, occurring in D, b1, . . . , bn are truth-values of these vari-
ables; let Ai be ai,¬ai, depending on whether bi takes value t or f ;
let D′ be D or ¬D depending on whether D takes value t or f with
truth-values b1, . . . , bn variables a1, . . . , an. Then A1, . . . , An ⇒ D′.

(⇒ is here a sign (symbol) for logical entailment, ¬ — for negation,
t и f — truth and falsity, respectively.)

2 Generalization of Kalmar’s method for
many-valued matrix logic

At the end of the sixties of the 20-th century I was able to generalize
this method for functionally complete many-valued matrix logics.
(Probably the generalization of this kind had been done earlier by
somebody else, but I have not heard of it up to now.)

Let’s illustrate the basic principles underlying the generalization
with one of the system of modal logic Sb− constructed by me.

Logical terms of language: ¬, ⊃, 2, ♢. (‘⊃’, ‘2’, ‘♢’ — are
respectively signs for implication, necessity and possibility)

2.1 Semantics Definitions of logical terms

⊃ tn tc f i f c

tn tn tc f i f c

tc tn tc f c f c

f i tn tn tn tn

f c tn tc tc tc

A ¬A 2A ♢A
tn f i tn tn

tc f c f c tc

f i tn f i f i

f c tc f c tc

tn, tc, f c, f i — are respectively truth-values ‘necessary truth’, ‘con-
tingent truth’, ‘contingent falsity’, ‘necessary falsity’. Designated
values are tn and tc.

2.2 Formalisation
The calculus includes schemes of axioms of classical propositional
calculus, modus ponens rule of inference and also following
schemes of axioms:

2A ⊃ A; ¬2¬A ⊃ ♢A; ♢A ⊃ ¬2¬A; ¬♢A ⊃ 2(A ⊃ B); 2B ⊃
2(A ⊃ B); ♢B ⊃ ♢(A ⊃ B); ♢¬A ⊃ ♢(A ⊃ B); ♢(A ⊃ B) ⊃
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(2A ⊃ ♢B); 2(A ⊃ B) ⊃ (♢A ⊃ 2B); 2A ⊃ 22A; ♢2A ⊃ ♢A;
♢A ⊃ ♢2A; 2A ⊃ 2♢A; 2♢A ⊃ 2A; ♢♢A ⊃ ♢A.

For the proof of meta-theorem of semantic completeness of calculi
Sb− the following lemma is needed.

Lemma 2. Assuming that D is a formula, a1, ..., an are all different
variables occurring inD, b1, ..., bn are truth-values of these variables.
Let Ai be 2ai, ai&♢¬ai, ¬ai&♢ai, ¬♢ai depending on whether
bi is tn, tc, f c or f i. Let D′ be 2D, D&♢¬D, ¬D&♢D or ¬♢D
depending on whetherD takes value tn, tc, f c or f i with truth-values
b1, ..., bn of the variables a1, ..., an. Then A1, ..., An ⇒ D′. ( & — is
here a sign for conjunction)

Lemma is proved by the use of recurrent mathematical induction.
If formula D takes designated value with all possible truth-

values of its variables, then D′ is 2D or D&♢¬D. In each case
A1, ..., An ⇒ D.

Let us substitute assumption 2ai+1 with number i + 1 from the
set of assumptions A1, ..., An for the set of formulas ai+1, ¬♢¬ai+1,
assumption ai+1&♢¬ai+1 for the set of formulas ♢¬ai+1, ai+1, as-
sumption ¬ai+1&♢ai+1 for the set of formulas ¬ai+1,♢ai+1, as-
sumption ¬♢ai+1 for the set of formulas ¬ai+1,¬♢ai+1. Then all
assumptions with number i+ 1 may be eliminated.

2.3 Illustration
1. A1, ..., Ai, ai+1,¬♢¬ai+1 ⇒ D,

2. A1, ..., Ai, ai+1,♢¬ai+1 ⇒ D,

3. A1, ..., Ai,¬ai+1,♢ai+1 ⇒ D,

4. A1, ..., Ai,¬ai+1,¬♢ai+1 ⇒ D,

5. A1, ..., Ai, ai+1 ⇒ D – from 1, 2,

6. A1, ..., Ai,¬ai+1 ⇒ D – from 3, 4,

7. A1, ..., Ai ⇒ D – from 5, 6.

In my doctoral thesis I brought forward 30 problems calling for
solution. Later these ideas were published in monograph [8, p. 208–
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217]. Many of these problems have been solved by now. The solu-
tions were published in 13 PhD theses and publications. Some of the
problems have not been solved yet. One of these problems (prob-
lem number 9) may be formulated as follows: if logic is function-
ally complete, then for any propositional variable a and any truth
value i there is a formula fi(a) containing only this variable and
taking some designated value if and only if a takes value i; sup-
pose a1, a2, ..., an are all different variables occurring in D; suppose
b1, b2, ..., bn are the truth-values of these variables; suppose As is
fk(as), if bs is k; suppose D′ is fr(D) (fr(D) is a formula formed
on the basis of D and taking designated value with truth-values
b1, b2, ..., bn of the variables a1, a2, ..., an). Then A1, A2, ..., An ⇒ D.

For example, 1, 1
2 , 0 are the truth-values of three-valued modal

logic of  Lukasiewicz; f1(a) is 2a, f 1
2
(a) is ♢a&♢¬a, f0(a) is ¬♢a; if

formula takes value 1 with some truth-values of its variables, then
fr(D) is 2D, etc.; assumptions may be eliminated like it was stated
for Sb−.

The ninth problem is the problem of finding the proof for meta-
theorem of semantic completeness of all known finite-valued matrix
logics and finding sets of axioms for all logics of this kind stated
semantically.

The seventeenth problem is the problem of generalization of this
method for the proof of semantic completeness (and solution of the
decision problem) of propositional quasi-matrix logics. This problem
has not been solved for a long time. The solution is brought off in
this article.

3 Quasi-matrix logic

Quasi-matrix is a set (Q,G, qf1, ..., qfs), where Q and G are non-
empty sets such that Q ⊆ G; qf1, ..., qfs are quasi-functions.

If a function is a correspondence in virtue of which an object from
some (functional) domain is related with certain object (from the
range of the function) then a quasi-function is a correspondence in
virtue of which an object from a certain subset of some set is related
with some object from a certain subset of some or another set (from
the range of the quasi-function).
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3.1 Examples

Function: {(a, d), (b, k), (c, k)}.

Quasi-function: {(a, d)Y2(a, k), (c,m)} = {{(a, d), (c,m)}Y2{(a, k),
(c,m)}},

Quasi-function: {Y4((a, k), (a, n), (c, k), (c, n)), (d, r) = Y4[{(a, k),
(d, r)}, {(a, n), (d, r)}, {(c, k), (d, r)}, {(c, n), (d, r)}]},

Y2 and Y4 are two- and four-place (respectively ) metalinguistic ex-
clusive disjunctions. Let us assume that disjunction may be degen-
erative, i. e. in this particular case quasi-function is just a function.
Then a matrix is a particular case of quasi-matrix.

In the general case an object of application of a quasi-function,
as well as truth-value of a quasi-function, are indefinite. Only sub-
range of the range of quasi-function, which includes this object, and
sub-range of the range of values of a quasi-function, which contains
a value of a quasi-function, are defined.

Such vagueness may be of a cognitive nature. It takes place,
when the above-mentioned correspondence or relation is objectively
functional, but this is not known to the researcher. For example,
there are three probable variants of translation of a certain word in
a dictionary, but the translator doesn’t know, which of these three
readings is the most appropriate in the present case (context). Such
situations also appear in systems of automatic translation.

Another cause of indetermination is that reality may be indeter-
minate itself. For example, for planning of a production we have to
take into account the following reasons. Suppose that we know the
limits of alteration of a quantity of raw stuff, which will be factored
next year. But it s impossible to figure out any rigid link between
definite quantity of a factored raw stuff and a quantity of output,
even if we knew a quantity of man-power, equipment etc.

For the first time some particular examples of quasi-functions
were represented by H. Reichenbach (1932, 1935, 1936), Z. Zavarski
(1936), F. Gonseth (1938, 1941), N. Rescher (1962, 1964, 1965,
1969). Rescher considers a material implication and defines it as
follows:
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A ⊃ B

t t t
t f f
f (t, f) t
f (t, f) f

(t, f) is not a determinate truth-values. This bracketed entry (t, f)
means that either one of these two truth-values may occur in the var-
ious particular cases. Hence, depending on specific sense of propo-
sitions, the whole implication may be either true or false. Other
logical terms are formulated in a usual way.

It is obvious that not all tautologies of a classical propositional
logic of the form A ⊃ B take the truth-value ‘t’ under any given
assignment of truth-values to elementary propositions.

Rescher formulates the conception of quasi-tautology. He adopts
t and (t, f) in his quasi-functional system Q as designated truth-
values. Then quasi-tautology is a formula which invariably does or
can take either of this designated truth-values for every assignment
of truth-values to its propositional variables. But if we bring to a
logical end Rescher’s reasoning we also have to treat as a quasi-
tautology propositional variable p.

Then Rescher ‘corrects’ definitions of  Lukasiewicz’ three-valued
logic.

A & B
1
2 (12 , 0) 1

2

Independently of the above-mentioned and some other authors I
came to the same considerations at the end of the sixties / beginning
of the seventies. My ideas were concerned with the way of modal
logic development. Though by that time a lot of different ‘logical
systems’ had been constructed, it wasn’t clear, what kind of modal
operators and notions (either factual or logical necessity, possibil-
ity etc.) were defined by these systems. It made the application
of modal systems to the natural reasoning analysis very difficult.
This condition of modal logic seemed to me unsatisfactory and in-
adequate. On purpose to overcome these difficulties I distinguished
two different branches of modal logical investigations: proper logic
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(or logic itself) and an imitation of logic. Proper logic deals with the
forms of thoughts. H. Curry called this kind of logic a philosophical
one. Imitation of logic is a certain (formal) system, e. g. algebraic
system, which in some respect resembles philosophical logic (usually
with respect to some technical symbols and signs) [15].

In the following explanations I am treating modern logic as a
philosophical logic in the sense of Curry.

In logic, as well as in each other science, it’s possible to distin-
guish empirical and theoretical levels of development. An essential
feature of a theory is its ability to explain phenomena. As I think,
my approach to the analysis of logical modalities, elaborated by
N. Arkhiereev, possesses this ability. Theory of factual modalities,
which is to be based on quasi-matrix logic, has not been yet com-
pletely developed. (Fundamental ideas of theory of logical modali-
ties are represented in [1, 2, 6, 7, 13, 14].)

I began to work out quasi-matrix logic with constructing the sys-
tem of minimal modal logic.

3.2 Minimal modal logic Smin

(Symbols of formalised language: 2,♢,¬,⊃).
 Lukasiewicz’s well-known statement about impossibility of proper

definitions of modal operators ‘necessary (2) and ‘possibly’ (♢) in
terms of ‘truth’ and ‘falsity’ is valid only if these operators are in-
terpreted as functions.

But if we interpret modal operators as quasi-functions, it becomes
possible to define them in above-mentioned terms.

Let’s consider formula 2A. Assume A takes value f (falsehood).
Then formula 2A also takes value f , since not-existing state of
affairs can not be necessary (both logically and factually). Assume
formula A takes value t (truth). What truth-value takes formula
2A in this case? The value is indeterminate. Formula 2A takes
either value t, or value f . Let’s notify this situation by t/f .

By the same reasoning, we can conclude that truth-value of
the formula ♢A is indeterminate, when formula A takes value
f . Definitions of signs of negation and implication are usual.
Designated truth-value is t.
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Principles of classical propositional logic and logic Smin

Classical propositional logic prin-
ciples

Principles of quasi-matrix
logic Smin

(1) the principle of bivalency (propo-
sitions take values from the domain
{t (truth), f (falsity)})

the principle of bivalency

(2) the principle of consistency (a
proposition can not have both the val-
ues)

the principle of consistency

(3) the principle of excluded middle
(a proposition necessarily has some of
these values)

the principle of excluded middle

(4) the principle of identity (in a com-
plex proposition, a system of proposi-
tions, an argument one and the same
proposition has one and the same value
from the domain {t, f})

the principle of identity

(5) the principle of specifying the truth
value of a complex proposition by truth
values of elementary propositions con-
stituting it (in classical logic this prin-
ciple acts as a matrix principle — logi-
cal connectives are interpreted as func-
tions)

the principle of specifying the
truth value of a complex propo-
sition by truth values of elemen-
tary propositions constituting it
(in Smin this principle acts as
a quasi-matrix principle — logi-
cal terms are interpreted as quasi-
functions)

Smin — formalism which is adequate to the system constructed se-
mantically. Smin-calculus is an extension of a classical propositional
calculus with added new axiom schemes: 2A ⊃ A, A ⊃ ♢A.
Smin-calculus is weaker than basic modal logic of  Lukasiewicz, since
the formula 2A ≡ ¬♢¬A is not provable there.

For the proof of semantic completeness meta-theorem of Smin-
calculus, we define alternative interpretation as follows.

Alternative interpretation is a function || || such as to: If P is —
propositional variable then ||P || ∈ {t, f}.

If ||A|| and ||B|| are defined, then ||¬A|| = t ⇔ ||A|| = f ; ||A ⊃
B|| = f ⇔ ||A|| = f or ||B|| = t; ||A|| = f ⇒ ||2A|| = f ; ||A|| =
t ⇒ ||2A|| ∈ {t, f}; ||A|| = t ⇒ ||♢A|| = t; ||A|| = f ⇒ ||♢A|| ∈
{t, f}. (⇔ and ⇒ are here abbreviations for expression ‘if and only
if’ (‘iff’) and ‘if..., then...’ respectively.)
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Formula is satisfiable iff it takes the value ‘true’ in some alterna-
tive interpretation. Formula is valid iff it is true under each alter-
native interpretation.

3.3 Four-valued quasi-matrix logical systems
Truth-values tn, tc, f c, f i are interpreted as follows: proposition tak-
ing values tn describes a state of affairs which takes place in reality
and which is strictly determined by certain circumstances; proposi-
tion taking values tc describes a state of affairs which takes place in
reality and which is not strictly determined by either circumstances;
proposition taking values f c describes a state of affairs which doesn’t
exist in reality and the absence of which is not strictly determined
by either circumstances; proposition taking values f i describes a
state of affairs which doesn’t exist in reality and which absence is
strictly determined by certain circumstances.

Four-valued quasi-matrix logic based on the following generaliza-
tion of classical logic principles.

Classical logic principles Quasi-matrix logic principles
(1) the principle of bivalency (propo-
sitions take values from the domain
{t (truth), f (falsity)})

the principle of four-valency
(propositions take values from
the domain {tn, tc, fc, f i})

(2) the principle of consistency (a
proposition can not have both the val-
ues)

consistency: can not have
more than one value from
{tn, tc, fc, f i}

(3) the principle of excluded middle
(a proposition necessarily has some of
these values)

the principle of excluded fifth

(4) the principle of identity (in a com-
plex proposition, a system of proposi-
tions, an argument one and the same
proposition has one and the same value
from the domain {t, f})

identity from the domain
{tn, tc, fc, f i}
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(5) the principle of specifying the truth
value of a complex proposition by truth
values of elementary propositions con-
stituting it (in propositional logic this
principle acts as a matrix principle —
logical connectives are defined by ma-
trices, in predicate logic it shows up in
the interpretation of logical terms and
predicates as truth functions).

the quasi-matrix principle (logi-
cal terms are interpreted as quasi-
functions)

Logical terms are the same as those in the Smin-system.

Definitions of logical terms:

A ¬A a b c d e
2A ♢A 2A ♢A 2A ♢A 2A ♢A 2A ♢A

tn f i t t tn tn tn tn tc tc tc tc

tc fc f t fc tc f i tn fc tc f i tn

f i tn f f f i f i f i f i fc fc fc fc

fc tc f t fc tc f i tn fc tc f i tn

A ¬A f g h i
2A ♢A 2A ♢A 2A ♢A 2A ♢A

tn f i t t t t tn tn tc tc

tc fc f i tn fc tc f t f t

f i tn f f f f f i f i fc fc

fc tc f i tn fc tc f t f t

B

(−) ⊃ tn tc f i fc

A

tn tn tc f i fc

tc tn tc fc fc

f i tn tn tn tn

fc tn tc tc tc

B

( ) ⊃ tn tc f i fc

A

tn tn tc f i fc

tc tn tn|tc fc fc

f i tn tn tn tn

fc tn tc tc tn|tc

B

(+) ⊃ tn tc f i fc

A

tn tn tc f i fc

tc tn tn|tc fc fc

f i tn tn tn tn

fc tn tn|tc tc tn|tc

t and tn|tc mean «either tn, or tc». f and f i|f c mean «either f i, or
f c».
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Following logical systems have been constructed on the basis of
above-stated definitions: Sa−, Sa, Sa+, Sb−, Sb, Sb+, Sc−, Sc,
Sc+, Sd−, Sd, Sd+, Se−, Se, Se+, Sf−, Sf , Sf+, Sg−, Sg, Sg+,
Sh−, Sh, Sh+, Si−, Si, Si+. Lower case letters occurring in the
name of systems corresponds to the definition of modal terms, signs
+,− and their absence correspond to the definition of implication.
tn and tc are distinguished truth-values.
The following considerations underlie the above-stated definitions

of logical terms. Let us consider formula 22A. If the subformula
A takes value t, then the value of a formula 2A, as it has already
been settled, is not determined, i. e. situation which is described
by A takes place in reality but is determined itself either strictly or
not. In the first case we have to assign to the formula 2A value t,
in the second one — the value f .

I.e. in the first case a proposition A is interpreted as being true
and (factually) necessary (in our terms it takes value tn). What
value in this case takes formula 22A? If A describes a state of
affairs which is strictly determined by any circumstances, then these
circumstances may in its own turn be either determined or not by
some others. That is formula 2A also takes value tn (or tc) etc.

Such situations occur both in subjective and objective reality.
Different kinds of distinct and fuzzy determination in biology were

considered by V.Yu. Ivlev in [5,6].
Semantic-constructed systems are formalized by a number of cal-

culi including as their general part all schemes of axioms of a clas-
sical propositional calculus, modus ponens — rule of inference and
following schemes of axioms: 2A ⊃ A; ¬2¬A ⊃ ♢A; ♢A ⊃ ¬2¬A;
¬♢A ⊃ 2(A ⊃ B); 2B ⊃ 2(A ⊃ B); ♢B ⊃ ♢(A ⊃ B);
♢¬A ⊃ ♢(A ⊃ B); ♢(A ⊃ B) ⊃ (2A ⊃ ♢B).

We sign with letter S the calculus, which is obtained from clas-
sic propositional calculus by means of above-stated eight model
schemes of axioms. The calculi corresponding to the semantic-
constructed systems may be worked out by addition to S of the
following schemes of axioms:
Sa−: 2(A ⊃ B) ⊃ (♢A ⊃ 2B).
Sa: 2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B);

2(A ⊃ B) ⊃ (♢A ⊃ (♢¬B ⊃ (¬A ⊃ ¬B))).
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Sa+: 2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B).
Sb−: 2(A ⊃ B) ⊃ (♢A ⊃ 2B); 2A ⊃ 22A; ♢2A ⊃ ♢A;

♢A ⊃ ♢2A; 2A ⊃ 2♢A; 2♢A ⊃ 2A; ♢♢A ⊃ ♢A.
Sb: 2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B); 2(A ⊃

B) ⊃ (♢A ⊃ (♢¬B ⊃ (¬A ⊃ ¬B))); 2A ⊃ 22A; ♢2A ⊃ ♢A;
♢A ⊃ ♢2A; 2A ⊃ 2♢A; 2♢A ⊃ 2A; ♢♢A ⊃ ♢A.
Sb+: 2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B);

2A ⊃ 22A; ♢2A ⊃ ♢A; ♢A ⊃ ♢2A; 2A ⊃ 2♢A; 2♢A ⊃ 2A;
♢♢A ⊃ ♢A.

Calculi Sc−, Sd−, Se−, Sf−, Sg−, Sh−, Si− include schemes of
axioms 2(A ⊃ B) ⊃ (♢A ⊃ 2B).

Calculi Sc, Sd, Se, Sf, Sg, Sh, Si include schemes of axioms
2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B); 2(A ⊃
B) ⊃ (♢A ⊃ (♢¬B ⊃ (¬A ⊃ ¬B))).

Calculi Sc+, Sd+, Se+, Sf+, Sg+, Sh+, Si+ include schemes of
axioms 2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B);.

Calculi, which have the same lower case letter occurring in the
names (e. g. calculi Sc−, Sc, Sc+), differ from calculi, which have
other lower case letters occurring in the names (e. g. calculi
Si−, Si, Si+), by sets of schemes of axioms {2(A ⊃ B) ⊃ (♢A ⊃
2B)}, {2(A ⊃ B) ⊃ (2A ⊃ 2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B);
2(A ⊃ B) ⊃ (♢A ⊃ (♢¬B ⊃ (¬A ⊃ ¬B)))}, {2(A ⊃ B) ⊃ (2A ⊃
2B); 2(A ⊃ B) ⊃ (♢A ⊃ ♢B)}.

The other additional schemes of axioms of these calculi are the
same:

Calculi Sc−, Sc, Sc+: 2A ⊃ 22A; ♢♢A ⊃ ♢A; ♢2A ⊃ 2A;
♢A ⊃ 2♢A.

Calculi Sd−, Sd, Sd+: ♢A∗, A∗ is modalized formula.
Calculi Se−, Se, Se+: ♢♢A; ♢¬2A; ¬♢A ⊃ ♢2A; 2A ⊃ ♢¬♢A;

♢2A ⊃ (A ⊃ 2A); ♢2A ⊃ (♢A ⊃ A); A ⊃ (♢¬A ⊃ 2♢A);
¬A ⊃ (♢A ⊃ 2♢A).

Calculi Sf−, Sf, Sf+: ♢2A ⊃ (A ⊃ 2A); ♢2A ⊃ (♢A ⊃ A);
A ⊃ (♢¬A ⊃ 2♢A); ¬A ⊃ (♢A ⊃ 2♢A).

Calculi Sg−, Sg, Sg+: A ⊃ (¬2A ⊃ ♢2A); ¬A ⊃ (♢A ⊃ ♢2A);
2♢A ⊃ (A ⊃ 2A); 2♢A ⊃ (♢A ⊃ A).

Calculi Sh−, Sh, Sh+: 2A ⊃ 22A; ♢2A ⊃ ♢A; 2A ⊃ 2♢A;
♢♢A ⊃ ♢A.
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Calculi Si−, Si, Si+: ♢♢A; ♢¬2A; ¬♢A ⊃ ♢2A; 2A ⊃ ♢¬♢A.
We use the rule of substitution of ¬¬A with A and visa versa.
For the proof of metatheorem of semantic completeness of calculi

Sb−, Sc−, Sd−, Se− (semantics for these calculi are of matrix sort)
the following lemma is proved.

Lemma 3. Assuming that D is a formula, a1, ..., an are all differ-
ent variables, occurring in D, b1, ..., bn are truth-values of these
variables. Let Ai be 2ai, ai&♢¬ai, ¬♢ai, ¬ai&♢ai depending on
whether bi is tn, tc, f i or f c. Let D′ be 2D, D&♢¬D, ¬♢D or
¬D&♢D depending on whether D takes value tn, tc, f i or f c with
truth-values b1, ..., bn variables a1, ..., an. Then A1, ..., An ⇒ D′.(⇒
is here a sign for entailment.)

Lemma is proved by the use of recurrent mathematical induction.

Semantics for others calculi are quasi-matrix (proper). For the
proof of metatheorem of semantic completeness of these calculi the
notion of alternative interpretation is used. We have the following
definition of alternative interpretation for Sa+-system.

Alternative interpretation is a function || || satisfying the follow-
ing:

If P is — propositional variable then ||P || ∈ {tn, tc, f i, f c}.
If ||A|| and ||B|| are defined, then ||¬A|| = tn ⇔ ||A|| = f i;

||¬A|| = tc ⇔ ||A|| = f c; ||¬A|| = f i ⇔ ||A|| = tn; ||¬A|| = f c ⇔
||A|| = tc;

||A ⊃ B|| = f c ⇔ (||A|| = tn and ||B|| = f c) or (||A|| = tc and
||B|| = f i);

||A ⊃ B|| = f i ⇔ ||A|| = tn and ||B|| = f i;
if either (||A|| = tn and ||B|| = tc) or (||A|| = f c and ||B|| = f i),

then ||A ⊃ B|| = tc;
if ||A|| = f i or ||B|| = tn, then ||A ⊃ B|| = tn;
if either ||A|| = ||B|| = tc or (||A|| = f c and ||B|| = tc), or

||A|| = ||B|| = f c), then ||A ⊃ B|| ∈ {tn, tc};
||A|| = tn ⇒ ||2A|| ∈ {tn, tc}; if either ||A|| = tc or ||A|| = f c, or

||A|| = f i, then ||2A|| ∈ {f c, f i};
||A|| = f i ⇒ ||♢A|| ∈ {f c, f i}; if either ||A|| = tn or ||A|| = tc, or

||A|| = f c, then ||♢A|| ∈ {tn, tc}.
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Sr — three-valued quasi-matrix logic.
(Symbols of formalised language are the same.) n, c, i — values

of Sr-system — which are interpreted respectively as ‘necessary’,
‘contingently’, ‘impossibly’. State of affairs is necessary if and only
if (iff) it is distinctly determined by certain circumstances; state of
affairs is contingent, iff neither its existence nor its absence is not
strictly determined by some circumstances; state of affairs is impos-
sible iff its absence is strictly determined by some circumstances.
Actually, here and above the evaluations of state of affairs concern
(to) propositions. (To my regret, I couldn’t find proper terms for
evaluation of propositions.)
Sr-logic is based on the following generalizations of principles of

classic logic.

Classical logic principles Principles of quasi-matrix logic
Sr

(1) the principle of bivalency the principle of three-valency (propo-
sitions take values from the domain
{n, c, i})

(2) the principle of consistency consistency: can not have more than
one value from {n, c, i}

(3) the principle of excluded middle the principle of excluded fourth
(4) the principle of identity Identity (in a complex proposition, a

system of propositions, an argument
one and the same proposition has one
and the same value from the domain
{n, c, i})

(5) the matrix principle the quasi-matrix principle (logical
terms are interpreted as quasi-
functions)

Definitions of logical terms:

A ¬A 2A ♢A
n i n n

c c i n

i n i i

⊃ n c i

n n c i

c n n|c c

i n n n

n|c is interpreted as ‘either n or c’. n is a designated value.
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Corresponding calculus includes all schemes of axioms of classi-
cal propositional calculus (note: in these schemes of axioms meta-
symbols A, B, C denote modalized formulas; the modalized formula
definition: if A is a formula of classical propositional calculus, then
2A and ♢A are modalized formulas; if B and C are modalized
formulas, then 2B, ♢B, ¬B, (B&C), (B ∨C), (B ⊃ C) are modal-
ized formulas; nothing else is a modalized formula.), modus ponens,
Godel’s rule, all schemes of axioms of Sc+-calculus, and besides the
following schemes: 2A ⊃ ♢A; ¬A ⊃ ¬2A; ¬♢A ⊃ ¬A; A ⊃ ♢A.

Alternative interpretation is a function || || for which the following
helds:

If P is propositional variable then ||P || ∈ {n, c, i}.
If ||A|| and ||B|| are defined, then ||¬A|| = n⇔ ||A|| = i; ||¬A|| =

c⇔ ||A|| = c; ||¬A|| = i⇔ ||A|| = n;
if either ||A|| = i or ||B|| = n, then ||A ⊃ B|| = n;
if ||A|| = ||B|| = c, then ||A ⊃ B|| ∈ {n, c};
if either {||A|| = c and ||B|| = i} or {||A|| = n and ||B|| = c},

then ||A ⊃ B|| = c;
||A|| = n and ||B|| = i, iff ||A ⊃ B|| = i;
||2A|| = n iff ||A|| = n; ||2A|| = i, iff {either ||A|| = c or

||A|| = i};
||♢A|| = i, iff ||A|| = i; ||♢A|| = n, iff {either ||A|| = n or

||A|| = c}.
The formalisation and the proof of the meta-theorem of semantic

completeness are the same as they were stated above.

3.4 Some peculiar properties of this logical system

First of all, it allows the use of the rule A⇒ 2A.
Besides, all derivable rule of inference of a classical propositional

calculus are applicable to modalized formulas only. Some (at least
some) direct rules of inference of a classical propositional calculus
are also applicable to non-modalized formulas, for example: A ∨
B,¬A⇒ B; but such indirect rules as rule of deduction:

Γ, A⇒ B

Γ ⇒ A ⊃ B
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and rule reductio ad absurdum

Γ, A⇒ B; Γ, A⇒ ¬B
Γ ⇒ ¬A

are not applicable to non-modalized formulas in derivation.
However, so-called weakened rule of reductio ad absurdum

Γ, A⇒ B; Γ, A⇒ ¬B
Γ ⇒ ♢¬A

is applicable to any formula in derivation.

4 Generalisation for quasimatrix logic
4.1 For logic Smin

Lemma 4. suppose that D is a formula, a1, ..., an are all different
variables, occurring in D, b1, ..., bn are truth-values of these vari-
ables; let Ai be ai or ¬ai, depending on whether bi is t or f ; let D′

be D or ¬D depending on whether D takes value t or f with truth-
values b1, ..., bn of the variables a1, ..., an in every alternative inter-
pretation, formed on the basis of some initial interpretation. Let D′

be D ∨ ¬D depending on whether D takes value t under the truth
assignment b1, ..., bn of the variables a1, ..., an in some alternative
interpretation formed on the basis of the initial interpretation, or it
takes value f under the truth assignment b1, ..., bn of the variables
a1, ..., an in some alternative interpretation formed on the basis of
the initial interpretation. Then A1, ..., An ⇒ D′.

If in some alternative interpretations formula D takes value t
and in some alternative interpretations it takes value f , then state-
ment ‘A1, ..., An ⇒ D ∨ ¬D’ may be substituted for the statement
‘A1, ..., An ⇒ D or A1, ..., An ⇒ ¬D’.

Proof. Lemma is proved by the use of recurrent mathematical
induction.

Basis of induction. D does not contain any logical terms. Proof
is obvious.

Assumption of induction. Proof holds for the formulas, containing
k (k ≤ n) occurrences of logical terms.
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Step of induction. Proof holds for the formulas containing n+ 1
occurrences of logical terms.

Case 1. n+ 1-th occurrence of the logical terms is the occurrence
of the sign of negation. Formula D is ¬B.

Suppose formula D takes value t in all alternative interpretations,
formed on the basis of some initial interpretation. Then B takes
value f in all these alternative interpretations. Вy the assumption
of induction A1, ..., An ⇒ ¬B.

Suppose formulaD takes value f in all alternative interpretations,
formed on the basis of some initial interpretation. Then B takes
value t in all these alternative interpretations and by the assumption
of induction A1, ..., An ⇒ B. Then A1, ..., An ⇒ ¬¬B.

Under the third possibility A1, ..., An ⇒ ¬B ∨ ¬¬B.
Case 2. n+ 1-th occurrence of the logical terms is the occurrence

of the sign of necessity. Formulа D is 2B. Suppose B takes value f
in all alternative interpretations, formed on the basis of some initial
interpretation. Then by the assumption of induction A1, ..., An ⇒
¬B. Since ¬B ⊃ ¬2B is a theorem scheme (contraposition of axiom
scheme 2B ⊃ B), then A1, ..., An ⇒ ¬2B. If B takes value t in
all or some alternative interpretations, then formula 2B takes value
t in some alternative interpretations and in some other alternative
interpretations it takes value f . Then it is obvious that A1, ..., An ⇒
2B ∨ ¬2B.

Case 3. n+ 1-th occurrence of the logical terms is the occurrence
of the sign of possibility. Formula D is ♢B. Suppose B takes value t
in all alternative interpretations, formed on the basis of some initial
interpretation. Вy the assumption of induction A1, ..., An ⇒ B.
Since B ⊃ ♢B is a theorem , A1, ..., An ⇒ ♢B. If B takes value f in
all or some alternative interpretations, then formula ♢B takes value
t in some alternative interpretations and it takes value f in some
other alternative interpretations. Then A1, ..., An ⇒ ♢B ∨ ¬♢B.

Case 4. n+ 1-th occurrence of the logical terms is the occurrence
of the sign of implication. Formula D is B ⊃ C. If formula D un-
der above-mentioned truth-assignments of its variables takes value
t in some alternative interpretations and in some other alternative
interpretations it takes value f , then D′ is (B ⊃ C) ∨ ¬(B ⊃ C).
The entailment is obvious. If D takes value f , then D′ is ¬(B ⊃ C).
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It is possible if in every alternative interpretation formula B takes
value t and formula C takes value f . Вy the assumption of induc-
tion for every alternative interpretation holds that A1, ..., An ⇒ B
and A1, ..., An ⇒ ¬C. Consequently A1, ..., An ⇒ ¬(B ⊃ C). Let’s
take into consideration the last case, then D takes value t in every
alternative interpretation. It means that in every alternative inter-
pretation formula B takes value f or formula C takes value t. Hence
by the assumption of induction,

A1, ..., An ⇒ ¬B
or

A1, ..., An ⇒ C.

Analyzing all possible cases we conclude: A1, ..., An ⇒ (B ⊃ C).
2

4.2 For logic Sr
Lemma 5. Suppose that D is a formula, a1, ..., an are all differ-
ent variables, occurring in D, b1, ..., bn are values of these variables;
let Ai be 2ai , ♢ai&♢¬ai, ¬♢ai, depending on whether bi is n, c,
or i. Let D′ be 2D, ♢D&♢¬D or ¬♢D, depending on whether
D takes value n, c, or i with values b1, ..., bn variables a1, ..., an
in all alternative interpretations, formed on the basis of some ini-
tial interpretation; suppose D′ is 2D ∨ (♢D&♢¬D), 2D ∨ ¬♢D,
(♢D&♢¬D) ∨ ¬♢D, (2D ∨ (♢D&♢¬D)) ∨ ¬♢D, depending on
whether D takes, respectively, value n in some alternative interpre-
tations and in some other alternative interpretations it takes value
c; D takes value n in some alternative interpretations and in some
others it takes value i; D takes value c in some alternative interpre-
tations and in some others it takes value i; D takes value n in some
alternative interpretations or it takes value c in some other alter-
native interpretations, or it takes value i in some other alternative
interpretations. Then A1, ..., An ⇒ D′.

If D′ is 2Di ∨ (♢Di&♢¬Di), statement ‘A1, ..., An ⇒ D′’ may
be substituted for ‘A1, ..., An ⇒ 2Di or A1, ..., An ⇒ ♢Di&♢¬Di’.
The substitution of the same kind is possible in case of other val-
ues in different alternative interpretations. I.e, logical entailment
is based on alternative interpretations formed on the basis of some



Generalization of Kalmar’s method for quasi-matrix logic 299

initial interpretation. For example, if formula takes value n in every
alternative interpretation, then the following holds for these alter-
native interpretations ‘A1, ..., An ⇒ 2Di or A1, ..., An ⇒ 2Di, or
A1, ..., An ⇒ 2Di’. Hence A1, ..., An ⇒ 2Di. Note that if there is
no any ambiguity the only alternative interpretation that is possible
is the initial one. In this case A1, ..., An ⇒ 2Di also holds. The
same holds for the other values.

Proof. Lemma is proved by recurrent mathematical induction on
the number of occurrences of logical terms in formula D.

Step of induction.
Case 1. Formula D is ¬B.
Suppose D takes value n in every alternative interpretation

formed on the basis of some initial interpretation. Then B takes
value i in every alternative interpretation formed on the basis of this
initial interpretation. Вy the assumption of induction A1, ..., An ⇒
¬♢B. ¬♢B ⊃ 2¬B is a theorem scheme. (Using theorem scheme
¬2¬A ⊃ ♢A.) Then A1, ..., An ⇒ 2¬B.

SupposeD takes value i in every alternative interpretation formed
on the basis of some initial interpretation. Then B takes value n
in every alternative interpretation. By the assumption of induction
A1, ..., An ⇒ 2B. Then A1, ..., An ⇒ ¬♢¬B. Here we use the
axiom scheme ♢A ⊃ ¬2¬A and the rule of substitution of ¬¬A for
A and vice versa.

Suppose D takes value c in every alternative interpretation
formed on the basis of some initial interpretation. Тhen B also
takes value c in every alternative interpretation. Вy the assump-
tion of induction A1, ..., An ⇒ ♢B&♢¬B. Hence A1, ..., An ⇒
(♢¬B&♢¬¬B).

Suppose D takes value n in some alternative interpretations
and it takes value c in some others. By the assumption of in-
duction: A1, ..., An ⇒ ¬♢B or A1, ..., An ⇒ ♢B&♢¬B. Since
in the first case A1, ..., An ⇒ 2¬B and in the second one
A1, ..., An ⇒ (♢¬B&♢¬¬B), the following holds: A1, ..., An ⇒
2¬B ∨ (♢¬B&♢¬¬B).

For other possible cases proof is analogous.
Case 2. Formulа D is 2B.
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Suppose D takes value n in every alternative interpretation
formed on the basis of some initial interpretation. Тhen B also takes
value n in every alternative interpretation. By the assumption of in-
duction A1, ..., An ⇒ 2B. Then A1, ..., An ⇒ 22B. (Using axiom
scheme 2A ⊃ 22A.)

SupposeD takes value i in every alternative interpretation formed
on the basis of some initial interpretation. Тhen B takes value i in
every alternative interpretation, or it takes value c in every alterna-
tive interpretation, or it takes value i in some alternative interpreta-
tion and it takes value c in some another alternative interpretation.
Under the last possibility by the assumption of induction

A1, ..., An ⇒ ¬♢B
or

A1, ..., An ⇒ (♢B&♢¬B).

In both cases A1, ..., An ⇒ ¬♢2B. (In the first case we use
axioms schemes ♢2A ⊃ 2A and 2A ⊃ ♢A, and in second one –
♢2A ⊃ 2A and ♢A ⊃ ¬2¬A.) Formula D can not take value c.

If formula D takes different truth values in different alternative
interpretations the proof may be concluded from the above-analyzed
cases.

Сase 3. Formula D is ♢B.
Suppose D takes value n in every alternative interpretation

formed on the basis of some initial interpretation. Тhen B takes
value n in every alternative interpretation, or it takes value c in ev-
ery alternative interpretation, or it takes value n in some alternative
interpretation and it takes value c in another alternative interpre-
tation. Under the last possibility by the assumption of induction

A1, ..., An ⇒ 2B
or

A1, ..., An ⇒ (♢B&♢¬B).

In both cases A1, ..., An ⇒ 2♢B. (In the first case we use axioms
schemes 2A ⊃ ♢A and ♢A ⊃ 2♢A, and in the second case we need
only the last axiom)

SupposeD takes value i in every alternative interpretation formed
on the basis of some initial interpretation. Тhen B takes value i in
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every alternative interpretation. Вy the assumption of induction
A1, ..., An ⇒ ¬♢B. Тhen A1, ..., An ⇒ ¬♢♢B. (Using the axiom
scheme ♢♢A ⊃ ♢A.) Formula D can not take value c. If formula D
takes different truth values in different alternative interpretations
the proof may be concluded from the above-analyzed cases.

Сase 4. n+ 1-th occurrence of the logical terms is the occurrence
of the sign of implication. Formula D is B ⊃ C.

Suppose D takes value n in every alternative interpretation
formed on the basis of some initial interpretation. It is possible if
B takes value i in every alternative interpretation or C takes value
n in every alternative interpretation. Вy the assumption of induc-
tion for every alternative interpretation holds: A1, ..., An ⇒ ¬♢B
or A1, ..., An ⇒ 2C. Hence: A1, ..., An ⇒ 2(B ⊃ C). (Using axiom
schemes ¬♢A ⊃ 2(A ⊃ B); 2B ⊃ 2(A ⊃ B).)

SupposeD takes value i in every alternative interpretation formed
on the basis of some initial interpretation. It is possible if B takes
value n in every alternative interpretation and C takes value i
in every alternative interpretation. Вy the assumption of induc-
tion for every alternative interpretation holds: A1, ..., An ⇒ 2B и
A1, ..., An ⇒ ¬♢C. Then A1, ..., An ⇒ ¬♢(B ⊃ C). (Using axiom
schemes ♢(A ⊃ B) ⊃ (2A ⊃ ♢B).)

Suppose D takes value c in every alternative interpretation
formed on the basis of some initial interpretation. It is possible if B
takes value n and C takes value c in every alternative interpretation
or B takes value c and C takes value i in every alternative interpreta-
tion. In the first case A1, ..., An ⇒ 2B and A1, ..., An ⇒ ♢C&♢¬C.
Then we have to prove: A1, ..., An ⇒ ♢(B ⊃ C)&♢¬(B ⊃ C).
A1, ..., An ⇒ ♢(B ⊃ C) (using theorem scheme ♢B ⊃ ♢(A ⊃

B)). A1, ..., An ⇒ ♢¬(B ⊃ C) (using axiom schemes 2(A ⊃ B) ⊃
(2A ⊃ 2B) and ¬2¬A ⊃ ♢A, and rule of substitution of ¬¬A
for A and vice versa). In second case A1, ..., An ⇒ ♢B&♢¬B, and
A1, ..., An ⇒ ¬♢C. Тhen A1, ..., An ⇒ ♢(B ⊃ C) ( using axiom
scheme ♢¬B ⊃ ♢(A ⊃ B)). A1, ..., An ⇒ ♢¬(B ⊃ C) (using axiom
schemes 2(A ⊃ B) ⊃ (♢A ⊃ ♢B) and ¬2¬A ⊃ ♢A).

Suppose D takes value n in some alternative interpretation
formed on the basis of some initial interpretation and it takes value
c in another interpretation. Then we have to prove: A1, ..., An ⇒
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♢(B ⊃ C)&♢¬(B ⊃ C) or A1, ..., An ⇒ 2(B ⊃ C), or the
equivalent statement A1, ..., An ⇒ ♢(B ⊃ C). This case is pos-
sible if both B and C takes value c in all alternative interpreta-
tions. Вy the assumption of induction A1, ..., An ⇒ ♢B&♢¬B and
A1, ..., An ⇒ ♢C&♢¬C. Тhen A1, ..., An ⇒ ♢(B ⊃ C) (using axiom
scheme ♢B ⊃ ♢(A ⊃ B)).

The proof of other possibilities may be concluded from the above-
analyzed cases. 2

Metatheorem 1. If formula D is universally satisfiable then it is
provable.

Since for every truth-assignment of the variables holds
A1, ..., An ⇒ 2D, then the following holds:

1. A1, ..., An−1,2an ⇒ 2D,

2. A1, ..., An−1,¬♢an ⇒ 2D,

3. A1, ..., An−1,♢an&♢¬an ⇒ 2D.

Hence:

4. A1, ..., An−1,♢an,¬♢¬an ⇒ 2D, from 1,

5. A1, ..., An−1,¬♢an ⇒ 2D, from 2,

6. A1, ..., An−1,♢an,♢¬an ⇒ 2D, from 3.

7. A1, ..., An−1,♢an ⇒ 2D, from 4, 6,

8. A1, ..., An−1 ⇒ 2D, from 5, 7. etc.

As 2D entails D, D is provable.

Remark 1. Since formula can take one of the seven values (n, c, i,
n/c, n/i, c/i, n/c/i), the problem arises to construct 7-valued logic
with this values (lets sign them with 1, 2, 3, 4, 5, 6, 7) and compare
it with Sr.
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4.3 For logic Sa-

Lemma 6. Suppose D is a formula, a1, ..., an are all different vari-
ables, occurring inD, b1, ..., bn are truth-values of these variables; let
Ai be 2ai , ai&♢¬ai, ¬♢ai, ¬ai&♢ai, depending on whether bi is tn,
tc, f i or f c. Let D′ be 2D, D&♢¬D, ¬♢D or ¬D&♢D, depending
on whether D takes value tn, tc, f i or f c with values b1, ..., bn of the
variables a1, ..., an in all alternative interpretations formed on the
basis of some initial interpretation. Suppose D′ is 2D∨ (D&♢¬D),
2D∨¬♢D, (D&♢¬D)∨¬♢D, (2D∨(D&♢¬D))∨¬♢D and so on,
depending on whether D takes respectively value tn in some alter-
native interpretations and in some other alternative interpretations
it takes value tc; D takes value tn in some alternative interpreta-
tions and in some others it takes value f i; D takes value tc in some
alternative interpretations and in some others it takes value f i; D
takes value tn in some alternative interpretations or it takes value
tc in some other alternative interpretations, or it takes value f i in
some other alternative interpretations. Then A1, ..., An ⇒ D′.

Proof. Lemma is proved by recurrent mathematical induction on
the number of occurrence of logical terms in formula D.

Step of induction.
Case 1. Formula D is ¬B.
Suppose D takes value tn in every alternative interpretation

formed on the basis of some initial interpretation. Then B takes
value f i in every alternative interpretation formed on the ba-
sis of this initial interpretation. Вy the assumption of induction
A1, ..., An ⇒ ¬♢B. ¬♢B ⊃ 2¬B is a theorem scheme. (Using
theorem scheme ¬2¬A ⊃ ♢A.) Then A1, ..., An ⇒ 2¬B.

Suppose D takes value f i in every alternative interpretation
formed on the basis of some initial interpretation. Then B takes
value tn in every alternative interpretation formed on the ba-
sis of this initial interpretation. Вy the assumption of induction
A1, ..., An ⇒ 2B. Then A1, ..., An ⇒ ¬♢¬B. Here we use an axiom
scheme ♢A ⊃ ¬2¬A and rule of substitution of ¬¬A for A and vice
versa.

Suppose D takes value tc in every alternative interpretation
formed on the basis of some initial interpretation. Then B takes
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value f c in every alternative interpretation formed on the ba-
sis of this initial interpretation. Вy the assumption of induction
A1, ..., An ⇒ ¬B&♢B. Hence A1, ..., An ⇒ ¬B&♢¬¬B.

Suppose D takes value f c in every alternative interpretation
formed on the basis of some initial interpretation. Then B takes
value tc too in every alternative interpretation formed on the ba-
sis of this initial interpretation. Вy the assumption of induction
A1, ..., An ⇒ B&♢¬B. Hence A1, ..., An ⇒ ¬¬B&♢¬B.

Suppose D takes value tn in some alternative interpretations
formed on the basis of some initial interpretation and it takes value
tc in some other interpretations. Вy the assumption of induction B
takes value f i in some alternative interpretations and it takes value
f c in other alternative interpretations. Then A1, ..., An ⇒ ¬♢B or
A1, ..., An ⇒ ¬B&♢B.

Since in the first case A1, ..., An ⇒ 2¬B and in the second
A1, ..., An ⇒ ¬B&♢¬¬B, the following holds: A1, ..., An ⇒ 2¬B ∨
(¬B&♢¬¬B).

For other possible cases proof is analogous.
Сase 2. Formula D is 2B.
Suppose D takes value tn or tc in every alternative interpreta-

tion formed on the basis of some initial interpretation. Then B
takes value tn in every alternative interpretation formed on the
basis of this initial interpretation. Вy the assumption of induc-
tion A1, ..., An ⇒ 2B. Then we have to prove: A1, ..., An ⇒
22B ∨ (2B&♢¬2B).

22B ∨ (2B&♢¬2B) ⇔ (22B ∨2B)&(22B ∨ ♢¬2B).
(22B∨2B)&(22B∨♢¬2B) ⇔ (22B∨2B)&(22B∨¬22B).
(22B ∨2B)&(22B ∨ ¬22B) ⇔ 2B.
Proof is completed. (⇔ is a sign for metalanguage equivalence).
Suppose D takes value f i or f c in every alternative interpretation

formed on the basis of some initial interpretation. Then B takes
value tc or f i, or f c in every alternative interpretation formed on the
basis of this initial interpretation. We have to prove: A1, ..., An ⇒
¬♢2B ∨ (¬2B&♢2B). That is, we have to prove: A1, ..., An ⇒
¬2B.

In the first case by the assumption of induction A1, ..., An ⇒
B&♢¬B. The proof is evident.
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In the second case A1, ..., An ⇒ ¬♢B. ¬♢B ⇒ ¬2B. (Using
axiom schemes ¬2¬A ⊃ ♢A and 2A ⊃ A.) The statement is
proved.

In the third case A1, ..., An ⇒ ¬B&♢B. ¬B ⇒ ¬2B. The
statement is proved.

Сase 3. Formula D is ♢B.
Suppose D takes value tn or tc in every alternative interpretation

formed on the basis of some initial interpretation. Then B takes
value tn or tc, or f c in every alternative interpretation formed on the
basis of this initial interpretation. We have to prove: A1, ..., An ⇒
2♢B ∨ (♢B ∧ ♢¬♢B). That is we have to prove: A1, ..., An ⇒ ♢B.
By the assumption of induction in every of three cases A1, ..., An ⇒
♢B.

Suppose D takes value f i or value f c in every alternative inter-
pretation formed on the basis of some initial interpretation. Then
B takes value f i in every alternative interpretation. We have to
prove: A1, ..., An ⇒ ¬♢♢B ∨ (¬♢B&♢♢B). By the assumption of
induction A1, ..., An ⇒ ¬♢B.

¬♢♢B ∨ (¬♢B&♢♢B) ⇔ ¬♢B
So A1, ..., An ⇒ ¬♢♢B ∨ (¬♢B&♢♢B) is proved.
Cases when formula D takes different values in different alterna-

tive interpretations may be reduced to the above-analyzed cases.
Сase 4. n+ 1-th occurrence of the logical terms is the occurrence

of the sign of implication. Formula D is B ⊃ C.
Suppose formula D takes value tn in every alternative interpreta-

tion. It is possible if either B takes value f i or C takes value tn. We
have to prove: A1, ..., An ⇒ 2(B ⊃ C). The statement may be eas-
ily proved by axiom schemes ¬♢A ⊃ 2(A ⊃ B), 2A ⊃ 2(A ⊃ B).

Suppose formula D takes value f i in every alternative interpre-
tation. Then B takes value tn and C takes value f i. We have to
prove: A1, ..., An ⇒ ¬♢(B ⊃ C). By the assumption of induc-
tion A1, ..., An ⇒ 2B and A1, ..., An ⇒ ¬♢C. Hence, A1, ..., An ⇒
¬♢(B ⊃ C). (Using axiom scheme ♢(A ⊃ B) ⊃ (2A ⊃ ♢B).)

Suppose formula D takes value tc in every alternative interpreta-
tion. It is possible if both B and C takes value tc in every alternative
interpretation, or if B takes value tn and C takes value tc, or if B
takes value f c аnd C takes one of the three values: tc or f i or f c.
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We have to prove: A1, ..., An ⇒ (B ⊃ C)&♢¬(B ⊃ C). Under the
first condition A1, ..., An ⇒ B&♢¬B and A1, ..., An ⇒ C&♢¬C.
C ⇒ B ⊃ C. B ⇒ ♢B. ♢¬C ⇒ ¬2C. ♢B&¬2C ⇒ ♢¬(B ⊃ C).
(Using axiom schemes 2(A ⊃ B) ⊃ (♢A ⊃ 2B), ¬2¬A ⊃ ♢A.)

Under the second condition A1, ..., An ⇒ 2B and A1, ..., An ⇒
C&♢¬C. The proof is the same as in the previous case.

Under the third condition A1, ..., An ⇒ ¬B&♢B and
A1, ..., An ⇒ C&♢¬C or A1, ..., An ⇒ ¬♢C, or A1, ..., An ⇒
¬C&♢C. In any case A1, ..., An ⇒ ¬2C. The proof is completed.

2

Cases when formula D takes different values in different alterna-
tive interpretations may be reduced to the above-analyzed cases.

Metatheorem 2. If formula D is universally satisfiable then it is
provable.

(Since for every truth-assignment of the variables holds
A1, ..., An ⇒ 2D or A1, ..., An ⇒ (D&♢¬D) then the following
holds: A1, ..., An ⇒ D.)

1. A1, ..., An−1,2an ⇒ D,

2. A1, ..., An−1,¬♢an ⇒ D,

3. A1, ..., An−1, an&♢¬an ⇒ D,

4. A1, ..., An−1,¬an&♢an ⇒ D,
Hence

5. A1, ..., An−1,¬♢¬an ⇒ D, from 1,

6. A1, ..., An−1,¬an,¬♢an ⇒ D, from 2,

7. A1, ..., An−1, an,♢¬an ⇒ D, from 3,

8. A1, ..., An−1,¬an,♢an ⇒ D, from 4,
And then:

9. A1, ..., An−1, an ⇒ D, from 5, 7,

10. A1, ..., An−1,¬an ⇒ D, from 6, 8,

11. A1, ..., An−1 ⇒ D, from 9, 10, and so forth.
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