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NON-STANDARD REDUCTIONS  
AND CATEGORICAL MODELS  

IN TYPED LAMBDA-CALCULUS 

Abstract. We consider the problem of incorporation of new computational 
rules in lambda calculus with inductive types and recursion. We consider the 
extensions of standard reduction systems by certain new reductions preserving 
strong normalization and Church-Rosser property with possible applications 
to proof assistants and computer algebra systems. 
 
Абстракт. Рассматривается проблема добавления новых правил 
вычисления к лямбда-исчислению с индуктивными типами и рекурсией. 
Рассматриваются расширения стандартных систем редукции при 
помощи новых редукций, сохраняющих строгую нормализацию и свойс-
тво Черча-Россера. Эти расширения имеют возможные приложения в 
областях компьютерных помощников поиска доказательств и систем 
компьютерной алгебры. 

1. Introduction  
 Computational power of untyped lambda-calculus is sufficient to 
represent any partial recursive function. One of obvious drawbacks is 
that some basic questions (like termination) are undecidable. Nowadays 
more and more attention is paid to various systems of typed lambda-
calculi since typing provides greater safety. In “non-pathological” sys-
tems, computation represented by well-typed term always terminates.  
 Another positive aspect of typed calculi in comparison with 
untyped case is due to so called “proofs as programs paradigm”. The 
type of a term can be considered as logical formula and the term 
represents its proof. At the same time it can be considered as a program. 
This explains why typed lambda-calculi are often used in modern 
proof-assistants. In perspective, this is one of possible ways to 
unification of proof and computation. 
 Of course, typing doesn’t resolve all the difficulties. One of them is 
that the representation of real computations in lambda-calculus 
including only the fundamental term and type constructors (application 
and abstraction for terms, functional arrow for types) is very indirect, it 
is in fact complex coding, satisfactory for theoretical results but lacking 
directness and transparency required for efficient applications. 
Extensions of typed systems with “real-life” inductive types like natural 
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numbers, lists, trees and corresponding functional constants and 
recursion operators are helpful but not sufficient. Mathematics 
computations are seldom represented in the form of recursive functions 
even if they are fully constructive. 
 Symbolic computations, for example, often include the 
transformations of symbolic expressions that were never studied from 
the point of view of properties of corresponding rewriting system. The 
importance of the problem of certified computation, symbolic or 
numerical (i.e., computation that is completed with the proof of its 
correctness) was emphasized several years ago in [4] but it was studied 
since in very limited number of cases. 
 The possibility usually provided by proof-assistants based on type 
theory is to obtain a proof-term that represents the proof of equality of 
two terms representing computations. This term should be carried 
everywhere the equality should be used, and this turns out to be very 
heavy and inefficient. 
 One of the reasons is that the system of reductions of terms 
incorporated in the underlying typed lambda-calculus is very restrictive. 
Because of this even very simple equalities used routinely very often 
require the proof-term corresponding to this equality to be carried 
around. It may require quite complex manipulations if the equality is 
used within another computation.  
 The approach we are studying in this paper is based on extension of 
the systems of reductions preserving good properties of the reduction 
system as a whole. Such properties as Strong Normalization (SN) and 
Church-Rosser property, or confluence (CR) need to be proved only 
once. Afterwards the use of the lambda-calculus may follow similar 
schema: some equalities are proved by reduction (this is much more 
efficient) and for some others we need to find a proof-term, but the 
classes of these “intensional” and “extensional” equalities are different, 
we have more “intensional” equalities. As result the transparency and 
efficiency of a system may be improved.  
 In this paper we consider several model cases of extensions of 
reduction systems in the calculus that doesn’t contain the type Prop and 
terms representing proofs, i.e., we concentrate on the computational 
part. This permits to simplify the technical side of the presentation. The 
calculus under consideration is simply typed lambda-calculus with 
inductive types. 
 Three cases are considered:  
 - the notion of a copy of inductive type and the reductions 
necessary to make it an isomorphism (it is not an isomorphism w.r.t. 
standard system of reductions and this complicates a lot the handling of 
copies of inductive types); 
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 - the reductions to incorporate into lambda-calculus certain 
algebraic structures, such as groups of permutations; 
 - functoriality of the schema of inductive type (a schema of 
parameterized inductive type, like List(A), does not represent a functor 
w.r.t. standard reductions). 
 The aim of this paper is to present an approach that would help to 
bring closer proof and computation. The results concerning functo-
riality are completely new, the results concerning copy and groups of 
permutations were partly published (see [5], [9]).  

2. Simply-typed lambda-calculus with inductive types 
 We will consider infinite sets of constructor name (Const), term 
variables (Var) and type variables (Tvar), with Const∩Var = 
Const∩Tvar = Var∩Tvar = ∅. We will reserve the letters x, y and z for 
term variables, α and β for type variables, r, s, t and u for arbitrary 
terms, ρ and τ for arbitrary types, and κ for constructor schemas. The 
letters i, j, k, l will only be used for indexes and, respectively, n, m, p, q 
for their upper bound. Finally, constructor names will be denoted either 
by c1, c2, …, c’1, c’2… or by the generic name in. Definitions will be 
introduced by the symbol =def , as in id =def λxτ .x. Terms and types 
will be considered up to α-congruence (that is, the names of bound 
variables are meaningless) and this last relation will be denoted ≡ , thus 
one has λxτ.x ≡λy:τ .y. Sequences of types or terms (ti)i=1,n will be 
written as t1÷n. Using this notation we will sometimes write ρ1÷n→τ to 
mean ρ1→…→ρn→τ, associated to the right. Furthermore, s∈t1÷n will 
mean that there is an i such that s≡ti, and ti÷n∈S will mean that all the ti’ 
s belong to the set S. Finally, if some indexes depend on other ones, we 
shall write j(i), and tj(1÷n) will stand for tj(1),…, tj(n). We will also need 
the notion of “curried” composition: for given lambda-terms f: ρ1÷n→τ 
and g:τ→υ, gοf will be defined as λz1÷n:ρ1÷n.g(fz1÷n), with z1÷n∉FV(g) 
and z1÷n∉FV(f). We shall also use the following notation, provided of 
course that f and g are of suitable types: g•f≡ gοf if f and g are 
composable, gf if they are not, but g can be applied to f.  
Definition 1. (Prototypes.) The grammar of prototypes is defined as 
follows: 
 τ::=α|τ→τ|µα(c1÷n:τ1÷n), with α∈Tvar. 
Definition 2. (Types). We define simultaneously:  
The set Ty of types: 
υ∈Tvar    ρ,τ∈Ty c1÷n ∈Const;α∈Tvar;κ1÷n∈Sch(α) 
υ∈Ty    ρ→τ∈Ty      µα(c1÷n:κ1÷n)∈Ty 
and the set Sch(α)of constructor schemas over type variable α : 
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____ρ1÷m,σ1,1÷j(1),… ,σ n÷j(n)∈Ty________________ 
ρ1÷m→(σ1,1÷j(1)→α)→…→(σn,1÷j(n)→α)→α∈Sch(α) 
As usual, constructor names can only belong to one inductive type. 
Thus, an inductive type is also defined by names of its constructors.  
 Remarks: 
 An inductive type is a recursive type built from a sequence of 
(constructor) schemas. 
 Every schema κk over α is of the form ρ1÷m→(σ1,1÷j(1)→α)→ 
…→(σn,1÷j(n)→α)→α and each premise is called an operator over α. 
The number of operators in a schema is denoted ar(κk) (arity). We write 
nbP(κk)=m for the number of ρ’s and nbR(κk )=n for the number of 
operators (σi,1÷j(i)→α), thus we have ar(κk) = nbP(κk) + nbR(κk ) = n+m. 
 The ρ’s and σ’s are in Ty, which implies they don’t contain any 
free type variable. They are called parameter types. The occurrences 
belonging to ρ1÷m are called covariant and to σ1,1÷j(1) ,…, σn,1÷j(n) 
contravariant. The fact that they don’t contain any free type variable 
implies also that the only occurrences of α  are those explicitly shown 
and α occurs only strictly positively in the operators of the schema. The 
operators containing α are recursive (correspond to “recursive calls”). 
If the list σi,1÷j(i) is empty, such operator is called 0-recursive otherwise 
1-recursive (by analogy with the functionals of types 0 and 1 in Gödel’s 
system T). By definition of schemas, parameter types can only occur at 
the beginning of the schema: this restriction is useful for technical 
reasons, most notably for the typing of recursors and the definition of 
their computation rules. It will be clear to the reader that this is a minor 
restriction which does not impair the system at all. 
Example 1. With the rules for inductive types described above, it is 
possible to define the types of natural numbers, of Brouwer’s ordinals 
and of lists of natural numbers:  
Nat =def µα[0:α, succ:α→α] 
Ord =def µα[0ord:α, succord:α→α, lim: (Nat→α)→α] 
List(Nat) =def µα[nil:α, cons: Nat→α→α] 
Note that every inductive type τ generates a recursor (or structural-
recursion operator) to any type µ. This is explained below. 
Definition 3. (Terms). The set of terms is generated by the following 
grammar (with x∈ Var, k∈N\{0} and τ, µ∈Ty ):  
 t::= x | λxτ t | (t t ) | ink

µ | (| t1÷n |)µ,τ 

Here ink
µ  is the k-th constructor of the inductive type µ (in practice, we 

actually have constructor names c∈Const) and (|t1÷n |)µ,τ is a recursor (or 
structural recursion operator) from µ to another type τ. 
Definition 4. (Step type.) Given inductive type(s) µ ≡ µα(c1÷n:κ1÷n) and 
a result type τ, we define for every 
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 κk ≡ ρ1÷m→(σ1,1÷j(1)→α)→…→(σn,1÷j(n)→α)→α in Sch(α)  
the step type 
 δµ,τ 
≡ ρ1÷m→(σ1,1÷j(1)→µ)→…→(σn,1÷j(n)→µ) →(σ1,1÷j(1)→τ)→…→(σn,1÷j(n)
→τ)→τ 
Definition 5. (Typing.) We define the following typing rules of the 
calculus:  
_____________ (Var) 
  Γ, x:τ |− x:τ  
 
  Γ, x:ρ |− t:τ                Γ  |− t:ρ→τ Γ|− u:ρ              
⎯⎯⎯⎯⎯⎯ (Lambda)       ⎯⎯⎯⎯⎯⎯⎯⎯⎯ (App) 
Γ |− λx:ρ.t:ρ→τ                  Γ |− (t u ):τ 
 
  c∈Const  Γ |− t1÷n : δ1÷n µ,τ 
⎯⎯⎯⎯⎯⎯ (In)  ⎯⎯⎯⎯⎯⎯⎯ (Rec) 
Γ |− ck : κk[µ]  Γ |− (|t1÷n |)µ,τ:µ→τ 
 Sometimes for typographical reasons we shall write types of 
variables as superscripts.  
 Reduction. We take most of our terminology and notation in [2]. 
Given a binary relation R on a set A, we will denote the induced rewrite 
relation →R, but shall sometimes write R for →R and vice-versa. We 
will respectively write →*R, →+

R, and =R for its transitive, reflexive-
transitive and reflexive-symmetric-transitive closures. Sometimes we 
may write R*, R+ and R=. We say that a term t rewrites to u if there is a 
term u such that t→R u and it reduces to u if there is a derivation t→R

+ 
u. The union R∪S of binary relations on the same set will be denoted 
RS. We also write R;S for the set {(r,s) | ∃t. rRt∧tSs}. A term is in 
normal form if it is not rewriteable. A rewrite relation R is strongly 
normalizing (terminating) is there is no infinite derivation t1→R t2 
→R…, for any term t1.  
 Given two rewrite relations R and S: R commutes with S if 
*←S;→*R⊆ →*R; *←S, R commutes strictly locally over S if ←S;→R⊆ 
→R; ←S. 
 This definition is made in [8], and by R. Di Cosmo in [9] to state 
Akama - Di Cosmo’s lemma under the name of (DPG) condition (see 
lemma 1 below). 
 A relation R is confluent (resp. locally confluent) if it commutes 
(resp. commutes locally) with itself. A strongly normalizing and 
confluent relation is said convergent. We will also write R/S to repre-
sent the quotient of a relation R by the reflexive-symmetric-transitive 
closure of S. 
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 The usual notion of substitution is written t{u/x} to mean that u 
replaces every free occurrence of x in t, avoiding capture. Finally, as 
usual in this kind of work, we will consider contexts, written C[], that 
is, terms with a “hole” inside which can be filled (giving for example 
C[(λxτ.p)q]. 
Definition 6. (β-conversion.) We define the relation of β-conversion by 
the following rule: (β).(λxτ.t)u→β t{u/x}. 
Definition 7. (η-conversion.) We define η-conversion by the following 
rule (η) t→η λxτ.tx if t of type τ→υ is not in applicative position, does 
not begin with λ and x ∉FV(t).  
(This rule is also called η-expansion and is known to be more 
convenient for categorical applications than η−reduction oriented in 
opposite way.) 
Definition 8. (ι-conversion.) Let µ≡µα(c1÷n:κ1÷n), and  
κk≡ ρ1÷m→(σ1,1÷j(1)→α)→…→(σn,1÷j(n)→α)→α over α in µ. Let 
v1÷m:ρ1÷m and u1÷n with ui

R: σi,1÷j(i)→µ for any 1≤ i ≤n. Then, we define 
ι-reduction by the rule  
 (ι) (| t |)µ,τinµ

k (v1÷m , u1÷n) →ι tk (v1÷m, u1÷n , ((| t1÷p |)µ,τ • u1÷n)). 
 Remark 1. Recall that g•f is just an abbreviation. Hence, we may 
describe ι-reductions as (|t1÷p |)µ,τinµ

k (v1÷m , u1÷n)→ι tk (v1÷m, u1÷n , ∆ 1÷n 
(u1÷n)) where 
∆i(ui) ≡ (|t1÷p |)µ,τ ui

 if  ui
R

 :µ (i.e., ui
R is 0-recursive), and ∆i(ui) ≡ (|t1÷p 

|)µ,τ ο ui
  if  ui : σi,1÷j(i)→µ (i.e., ui is 1-recursive). 

 Example 2. If we take the type of Brouwer’s ordinals, Ord =def 
µα[0ord:α, succord:α→α, lim: (Nat→α)→α], then, given some type τ 
(the type of result), the step types corresponding to 0ord, succord and lim 
will be respectively τ, Ord→τ→τ and (Nat→Ord)→(Nat→τ) → τ, the 
recursor will be of the form (|t1,t2,t3|) with t1:τ, t2:Ord→τ→τ, 
t3:(Nat→Ord)→(Nat→τ) → τ and the ι-reduction will take the 
following forms:  
(|t1,t2,t3|) 0ord →ι t1, (|t1,t2,t3|) succord(u1) →ι (t2 u1)((|t1,t2,t3|)u1),  
(|t1,t2,t3|) lim (u2) →ι (t3 u2) ((|t1,t2,t3|) ο u2) ≡ (t3 u2) 
(λxNat.((|t1,t2,t3|)(u2xNat)) 
(here u1:Ord, u2:Nat → Ord). 
 The λ-calculus thus defined, together with βηι-conversion, is called 
βηι. 
 In the rest of this paper, we will often omit type indications, except 
for abstracted variables, to lighten the notation.  
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3. Main results  
3.1. Copy 

 Let us consider the type µ ≡ µα[c1:σ1,1÷j(1)→ α, ... cp: σp,1÷j(p) → α]. 
 An exact copy of this type differs only by names of introduction 
operators, e.g., µ ' with introduction operators c'1÷p. It is faithful or 
isomorphic copy of µ if some of the parameters π are replaced by 
isomorphic types π'. 
Remark 2. The types π and π ' are isomorphic if there exist f: π → π' 
and f': π'→ π such that f of' and f'of can be reduced to idπ, idπ' 
respectively. In this case we write f:π ↔ π': f'.  
 In general we call “copy” of µ any type µ' that differs by names of 
introduction operators and some parameters π are replaced by π' with f: 
π → π' and f': π'→π, but it is no more required that f, f' were mutually 
inverse. 
 Let one occurrence of π into µ' ≡ µα[ c1:σ1,1÷j(1)→ α, ... cp: σp,1÷j(p)→ 
α] be fixed and µ' be a copy of µ such that the occurrence of π is 
replaced by π' (other changes concern only the names of introduction 
operators). We shall consider only the case when π occurs as a 
parameter type. Assume that it is given f: π →π' when the occurrence is 
covariant and f: π'→ π it is contravariant. The function Cp(f): µ→µ' is 
defined as (| t1÷p|) where the terms t1,..., tp are defined in the following way. 
 We shall note by f r the application fr if r:π or r:π' corresponds to an 
occurrence to be replaced and r otherwise. Similarly, we shall write g o 
f for g o f if g has π or π' as its domain and for g otherwise. 
 Let us consider the introduction operator ci :σi,i÷j(i)→ µ. We may 
assume that σi,i÷j(i)→ µ ≡ π1÷k →µ→...→µ→(π1,1÷n(1) → µ)→...→ 
(πm,1÷n(m) →µ)→µ (with l premises of the form µ). 
 We define: 
 ti ≡ λx1÷k: π1÷k.λy1÷l:µ.λz1÷m: π1÷m,1÷n(1÷m) →µ.λu1÷l:µ’. λv1÷m: π1÷m,1÷n(1÷m) 
→τ.ci'(f x)r(s o f'). 
Example 3. Take again the type of Brouwer’s ordinals and let f: Nat’→ 
Nat. We have Cp(f) ≡ (| t1÷3|), t1 ≡ 0’ord, t2 ≡ λyOrd. λuOrd’ .succ’ord(u), t3 ≡ 
λz Nat→Ord .λv Nat→Ord’ .lim’(v o f).  
 When f is an isomorphism with inverse f-1, the function Cp(f) is an 
extensional isomorphism in the sense that for every canonical element e 
of type µ (constant term containing only c1,..., cp)  Cp(f-1 )(Cp(f) e)→ βηι 
e. One of main motivations to study non-standard reductions and their 
properties was for us the fact that within standard system of reductions 
βηι many equalities are only extensional, for example Cp(f-1 ) o Cp(f) 
does not reduce to idµ  or, equivalently, Cp(f-1 )(Cp(f) x) does not 
reduce to x if x is a variable, so, in practice, we have either to carry 
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everywhere proof-term or we cannot verify the equalities before some 
constant value is called.  
 This will be the case even if we take f to be identity. For example, 
the composition of Cp(id) for Ord ≡ µα[0ord:α, succord:α→α, lim: 
(Nat→α)→α] and Ord’≡µα[0’ord:α, succ’ord:α→α, lim’: (Nat→α)→α] 
will not be reducible to idOrd≡ λxOrd.x. In fact the term (| t’1÷3|) ((| t1÷3|)x) 
will be βηι−normal. 
 Meanwhile, as the results below show, reductions can be added to 
βηι to make  the resulting system SN and CR. 
Definition 9. (χ-reduction.) Let f be an isomorphism and f-1 its inverse. 
The χ-rewriting rule is defined by 
 (χ1) Cp(f-1)(Cp(f)r)→χ r 
 (χ2) Cp(f-1)(Cp(f)r)→χ r, 
where it is supposed that f and f-1 act at the same occurrence of 
parameter of some inductive type µ and its faithful copy µ’, r is 
arbitrary term.The χ-reduction is its contextual closure. 
 For lambda-calculus with inductive types considered in this paper 
the following theorem holds:  
Theorem 1. The βηιχ reduction is SN and CR.  
 The detailed proof of this theorem may be found in [5]. Here we 
rather would like to discuss in more concrete way than before the 
specifics of the proofs of SN and CR for the extensions of reduction 
systems of the type we consider in this paper, both its technical and 
conceptual aspect.  
 The proof of SN for βηιχ reduction uses some standard lemmas, 
first of all, the Akama - Di Cosmo Lemma: 
Lemma 1. Let R and S be two convergent relations, such that R 
preserves S-normal forms. Then RS is convergent if R commutes 
strictly locally over S. [1, 8]. 
 Standard techniques are sufficient to prove convergence of βηι part. 
To prove SN property in theorem 1 we need some more definitions and 
lemmas. 
Definition 10. (Adjournment.) Given two binary relations R and S, S is 
adjournable w.r.t. R if S; R ⊆ R, (RS)*. 
Lemma 2. (Adjournment lemma.) Given two strongly normalizing re-
lations R and S, RS is strongly normalizing if S is adjournable w.r.t. R. 
Proofs of (variants of) this lemma can be found in literature [1, 3, 7, 8]. 
A subtle point in the proof of SN for βηιχ is that there are cases when 
the adjournment lemma can be used only on condition that certain 1-
recursive arguments of ι-redex are η-expanded. The idea is therefore to 
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insert suitable η-expansions in a term before χ-conversion, so that the 
adjournment remains possible. 
Definition 11. (Conditional adjournment.) Let R and S be some 
reduction relations and P be a predicate on terms. Then S is adjournable 
w.r.t. R under condition P if ∀t∀t’∀t’’. P(t)∧ t →S t’∧ t’→R t’’ ⇒ ∃ u. 
t→R u →*RS t’’.  
Definition 12. (Realization.) Let T be a reduction relation, P be a 
predicate on terms and t some term. Then T realize P for t if ∃ t’. t→*T 
t’∧ P(t’). It will be said that T realizes P if this is true for every term t. 
Definition 13. (Insertability.) Let U, T be two reduction relations and Q 
a binary relation on terms. Then T is insertable in U w.r.t. S if: 
 - T⊂ U, 
 - If t1 Q t2 and t1→{U\T}t1’ then there exists t2’ such that t2→+

U t2’ and 
t1’ Q t2’, 
 - If t1 Q t2 and t1→Tt1’ then there exists t2’ such that t2→*

U t2’ and t1’ 
Q t2’ 
Lemma 3. (Insertion.) Let U, T be two reduction relations and Q a 
binary relation such that:  
 - T is insertable in U w.r.t. Q, 
 - T is SN. 
Then for every infinite sequence of U-reductions u beginning at the 
term t, and every T-reduction t→T t’ such that t’ Q t there exists an 
infinite sequence of U-reductions that has as its first step t→T t’. 
 The principal idea of insertion and insertion lemma is that we can 
add necessary reductions and preserve infinite sequences of reductions 
if they exist. This is useful for the proofs of strong normalization “ad 
absurdum”. In the proof of theorem 1 this lemma is used with η-
expansions as T, the whole βηιχ as U, and the relation of η-reduction 
inverse to η-expansion as Q. 
Lemma 4. (Pre-adjusted adjournment.) Let R, S, T be reduction 
relations, Q a binary relation and P a predicate on terms such that:  
 - T⊂ R, 
 - R is SN, 
 - S is SN, 
 - T realizes P, 
 - S is adjournable w.r.t. R under condition P, 
 - T is insertable into RS w.r.t. Q. 
Then RS is SN. 
 This lemma is used in the setting similar to lemma 3, with P(t) 
meaning that the term t is in η-expanded form. T corresponds to η-
expansion. 
 These lemmas are sufficient to prove SN property. 
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 The proof of CR property (confluence) is based on routine check of 
possible critical pairs. 
 The following example shows how the notion of copy may be used 
to define easily interesting data structure. 
Example 4. In type theory the (easily defined) embeddings of Nat into 
Nat are used to define even and odd numbers. In the definition of even 
numbers 0 is mapped to 0, 1 to 2 etc., and in case of odd numbers 0 is 
mapped to 1, 1 to 3... In fact, to make this definition “clean” the copies 
of Nat should be used. Let us note these copies by Nat’, Nat’’. Let E: 
Nat’→Nat and O: Nat’’→ Nat be corresponding embeddings. We have 
also Cp’: Nat→Nat’ and Cp’’: Nat→Nat’’ (there is no change of 
parameter, so there is no parameter f in Cp’, Cp’’). Combining E, O, 
Cp’ and Cp’’ we can now iterate the whole construction:  
              E     Cp’     E 
     Nat ← Nat’ ← Nat ← ... 
      Cp’’ O↑   Cp’↑    O↑ 
 → Nat → Nat’’   Nat← 
  ↑      ↑ Cp’’  ↑   
        →Nat 
          ↑ 
and within this structure define all subtypes of Nat defined via 
divisibility by 2n. 

3.2. Algebraic Structures 

 In this part we consider the extensions of reduction systems used to 
provide good representation of algebraic structures on finite types. 
 Finite set |n| = {1,..., n} will be represented by the type n = def 
µα(cn1:α,..., cnn:α) (of course many representations that differ only by 
the names of the constructors are possible). 
 To every function f: |n|→ |m| corresponds a term f:n→ m of the 
form (|cmf(1),..., cmf(n) |) where m is µα(cm1:α,..., cmm:α). Note that the 
terms f are normal.  
 We considered two problems concerning finite types and terms f : 
(a) What categorical structure can be introduced on this calculus and (b) 
what can be done to represent symmetric group using finite types and 
corresponding representation of permutations. 
 The difficulty in type theory as usual is that w.r.t. standard 
reductions one doesn’t for example have g(f r) =βηι (g o f) r for arbitrary 
term r. 
Definition 14. We define υ-rewriting by  
 g(f r) →υ (g o f) r 
and υ-reduction as its contextual closure. 
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 The υ-reduction is thus defined for all recursors in normal form 
representing the applications f: |n|→ |m|, g: |m|→ |p|. It is supposed, of 
course, that “externally” the functions f and g are known.  
Theorem 2. The βηιυ reduction is SN and CR. 
 The proof of this theorem uses essentially the same lemmas as in 
case of copy (the details may be found in [5], cf. also [6, 9]). 
 Categorical structure. As soon as the υ-reduction is integrated 
in the calculus, it becomes possible to define categorical structure on 
this calculus, in the following way:  
 - the objects are the types representing |n| for all n∈N (let us recall 
that there is infinitely many of them because the names of the 
constructors may be different); 
 - the arrows between n and m are the equivalence classes modulo 
βηιυ of the recursors f : n→m for every f: |n|→|m|. 
 One may consider idn,=def (|cn1,..., cnn |), one of many 
representations (associated with n ) of the identity map on |n|. Let us 
recall that one has also idn ≡ λxn

.x . This term doesn’t belong obviously 
to the categorical structure described above. It may be noticed that the 
reduction of idn, to idn is not necessary for the categorical construction 
described above because it would lead us outside this categorical 
structure and, moreover, one already has f o idn ↔* f ↔* idn o f. This 
is a case when in certain categorical structures within λ-calculus the 
term chosen to represent identity is not necessarily of the form λx.x . 
 Interaction with the copies. The results concerning υ-reduction 
presented above didn’t take into account copies and χ-reduction. In fact 
when the χ-reduction is added, the identification of idn and idn ≡ λxn

.x 
may be necessary, since with χ-reduction the following critical pair 
appears. Let us take Cp: n→n’ and Cp’:n’→n (the copy map without 
change of parameter). We’ll have: 

idnx υ← Cp’(Cp x) →χ x 
To avoid non-confluence one can add the following new reduction rule. 
Definition 15. (ω-reduction.) The ω-rewriting relation is defined by:  
 idnr→ω r for every n∈ N and term r 
and ω-reduction relation is its contextual closure. 
Theorem 3. The βηιυχ reduction is SN and CR.  
 Group structure. Now we consider only the case of f: |n|→|n| 
associated term representation f: n→n. The set of (equivalence classes 
of) these terms, in presence of υ-reduction, may be considered as a 
representation of symmetric group, i.e., the group of permutations of 
the set {1,..., n}. But the groups are often defined in mathematics using 
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generators and relations, and it is natural to ask, if there is any 
connection between this definition and the notion of normal form used 
in lambda-calculus. The normal forms w.r.t. βηιυ−reduction have little 
to do with generators-and-relations representation of symmetric group. 
But instead of υ-reduction we may consider reductions going in 
opposite direction, i.e., “splitting” f into composition.  
 It is well known that every permutation f: |n|→|n| can be 
represented as a product of disjoint cycles. 
 More precisely, f is called cycle if there exists some subset {i1,..., 
ik}∈ {1,..., n} such that f(i1) = i2,..., f(ik-1) = ik, f(ik) = i1 and f(i) = i if 
i∉{i1,..., ik}. 
 Two cycles are disjoint if the corresponding sets {i1,..., ik} and 
{j1,..., jl} have no common elements. 
 Product in Sn is represented by functional composition of 
permutations. 
 If f: |n|→|n| then f = f1 o ... fm where f1,..., fm are disjoints cycles and 
the cycles that appear in the product are unique. 
 Product (composition) of disjoint cycles is commutative but it is 
possible to order cycles (for example, lexicographically) and to have for 
every f unique decomposition f = f1 o ... fm with f1≤... ≤ fm . This 
suggests to study the conversion f r → f1 ( ... (fm r)..) instead of →υ 
where f : |n| → |n| and f1,..., fm are disjoints cycles of the unique 
decomposition of f.  
Definition 16. The υ’-rewriting is defined by  
 f r → f1 ( ... (fm r)..) 
for every permutation f : |n|→ |n|, with n≥ 2, where f is decompose in 
m≥2 pairwise disjoint cycles. The υ’-reduction is defined as its 
contextual closure. 
Theorem 4. βηιυ reduction is SN and CR.  
 (See [5], [9]) 

3.3. Functoriality of schemas 

 In this part we consider most recent results obtained by Freiric 
Barral. These results concern more general categorical structures in 
lambda-calculus with inductive types. 
 When a schema of inductive type µ ≡ µα[in1:σ1,1÷j(1)→ α, ... inp: 
σp,1÷j(p) → α] is given, to everybody familiar with category theory it 
suggests the question of functoriality of this schema w. r. t. its 
parameters. Assume that for every choice of parameters the names of 
introduction operators are fixed. The choice of parameters may be 
limited in advance by some set of possible values.  
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 In fact, since many categorical structures (with types as objects) 
were considered on the fragments of lambda-calculus, it may be the set 
of objects of one of such syntactic categories. 
 For example, it could be certain set of types of the form n.  
 It may be also that only some functions f: π→π’ are admitted (are 
considered as morphisms of the underlying category). 
 If we want to define a functor using the schema of inductive type, it 
is natural to take as its values on objects the types corresponding to the 
values of parameter. For simplicity we shall assume that only one 
occurrence of parameter is modified. 
 For example, we may consider 
 List(π) =def µα[nilπ:α, consπ: π→α→α] 
(we added the index π to show that the names of introduction operators 
are different for different values of parameter). 
 Or we may consider 
 Ord =def µα[0ord(ν):α, succord(ν):α→α, limν: (ν→α)→α] 
where ν is taking only copies of Nat as values. 
 Notice that in the first case we have covariant occurrence of the 
parameter and in another contravariant. 
 The function Cp(f) may be suggested now as the value on 
morphism f: π→π’. Indeed, if we shall denote by µ(π), µ(π’) the types 
corresponding to the values π, π’ of parameter, we shall have Cp(f): 
µ(π) →µ(π’) for covariant occurrence and Cp(f): µ(π’) →µ(π) for the 
contravariant. 
 The problem will be that the equalities required in category theory: 
Cp(f) o Cp(g) = Cp(f o g) for covariant occurrence and Cp(f) o Cp(g) = 
Cp(g o f) for contravariant, and Cp(idπ) = idµ(π) will not hold. It turns 
out that this problem can be solved by appropriate extension of the 
system of reductions. 
Definition 17. The θ-rewriting is defined by  
 Cp(g)(Cp(f) r)→θ Cp( (f o g)*) r 
in case of covariant occurrence of a parameter, and 
 Cp(g)(Cp(f) r)→θ Cp( (g o f)*) r 
in case of contravariant one. Here it is assumed that f, g act on the same 
occurrence of a parameter, and (f o g)* denotes the βηι-normal form of 
(f o g). The θ-reduction is defined as its contextual closure. 
 The main reason to consider this reduction is to obtain new 
categorical structures from already defined ones together with a functor 
given by the schema of inductive type. It should be noted that in 
general one may have difficulties with the proof of SN and CR for the 
calculus extended by θ-reduction but since the underlying categorical 
structure doesn’t necessarily include all the functions f: π→π’ definable 
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in our calculus it is natural to consider certain restrictions on the 
structure of term representing f. 
Theorem 5. Let in the definition of θ-reduction the following 
additional constraint be satisfied: f and g should be of the form λxπ.x, 
of the form (| t1÷n |) (or expansions of such terms) where t1÷n do not 
contain free variables. Then the βηιθ reduction is SN and CR.  
 The proof of this theorem is more complex than in previous cases, 
especially in the part SN. The proof uses again conditional adjournment 
(in principal case →θ of followed by →ι), but in addition we need to 
prove that in a special case β-reduction is inserable. (In general of 
course it is not, because, for example, when the term contains a redex 
of the form the term s can disappear because of β-reduction, and 
original infinite sequence may originate from s.) The inserability proof 
uses parallel construction of several partly defined insertion operators 
and the proof that at least one will indeed produce an infinite sequence 
of reductions if input sequence was infinite. This is used to obtain a 
contradiction with SN for βηι reduction.  
 The constraints we had to impose on the structure of f and g in θ-
reduction were necessary for the proof of confluence. 
 It should be noted that this variant of constraint is not the only 
possible constraint that will provide the “good behavior” of extended 
system of reductions. The fact that there are other possibilities is 
demonstrated by the following example. 
 We may take as the only object of underlying category the object 
Nat and as morphisms the functions succ, succ o succ, ... , succ o succ 
... o succ: Nat→ Nat. If we shall restrict θ-reduction to the case when f 
and g are of this form only, the βηιθ reduction will be SN and CR. 
 At the moment we work on more general description of possible 
constraints to be imposed on θ−reduction.  

4. Conclusion 
 Probably one of the main reasons why the “Types” community 
didn’t yet study  actively the extensions of standard reduction systems 
is that very little success and a lot of technical difficulties was expected. 
There are some exceptions [10], and hopefully more and more. Another 
reason is that there is still too much separation between groups working 
on theoretical aspects of formal methods and their applications, and 
between different approaches. One may mention two European research 
projects: “Types” and “Calculemus”. While the people working on 
theoretical analysis of formal systems possess necessary methods and 
could prove useful innovative results, they are often satisfied with much 
less innovative solutions of standard problems. Within the class of 
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problems we consider here it might be standard βη normalizability for 
slightly modified calculus. 
 The groups working on practical aspects and implementation of 
theorem provers, proof assistants and alike, leave fundamental 
questions unanswered, or provide makeshift answers that, in long term, 
cannot satisfy competent user. One example cited above is the problem 
of extensional versus intensional equality. It is difficult to imagine a 
user, if only this user does not consider the answer provided by 
“scientifically approved” proof assistant as an oracle, who would accept 
that, for example, that the multiplication by 2 followed by (integer) 
division by 2 does not define identity on Nat. But with respect to 
intentional equality is not identity function.  
 Our methods permit to introduce simple extension of reduction 
system where it will be identity function. 
 In general the properties of extensions of reduction systems are not 
always easily proved, and there is many cases when they do not have 
good properties with respect to reduction at all. 
 One example “close at hand” would be the isomorphism between 
Nat and Nat × Nat. It holds extensionally because Nat × Nat can be 
enumerated, but the attempt to add “supporting” reductions, following 
χ-reduction as a model, fails (one doesn’t obtain SN and CR system). 
 The point is that in many cases extensions with good properties can 
be successfully obtained. Moreover, this is true for some cases that are 
conceptually important, as with copies.  
 One may note that the Cp(f) permits to obtain new isomorphisms 
from already existing. The isomorphisms already have important role in 
applications, for example, for invertible transformations of data, so 
called “middleware”, data search etc. 
 The same potential to generate new categorical structures from 
already existing within lambda-calculus has the theorem about 
functoriality of the schemas of inductive types w.r.t their parameters in 
an extension of standard reduction system that still has good properties, 
i.e., is convergent. 
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